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PRODUCTS AS REFLECTIONS

Miroslav HUSEK, Praha

Situations when a product of topological spaces is a
reflection of a subspace are investigated. Consequences
and connections: pseudocompact spaces, R-spaces, reflec-
tions of products.

All the spaces considered are assumed to be uniformi-
zable Hausdorff,

During the author ‘s stay in Mathematical Center in Am-
sterdam, Autumn 1970, the following question was rised in
a discussion: Is the complement in K“h (R real line)
of a point homeomorphic to the complement of two points?
The answer is easy if one realizes a Corson s theorem [5]
implying that in this case R®71 is the Hewitt réalcom-
pactification of the complements, In general, if we have
a product space Tl §£Py% eand two of its non-homeomorphic

subsets A, B we want to know whether TI {Py3 - A ,

’
T {P3~-B are homeomorphic. The question is answered
in the negative if one knows that any homeomorphism bet-

ween TT 4P, 3-A, TM4Py3-B extends to an autohomeo-
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morphism on T £P;%¥ and this last property holds in the
case that T 4Py} 1is a reflection of both TM{P} -A ,
T4P3-B . Clearly, if T {Py? is a reflection of a
space P in a reflective replete subcategory ¥ of Tory, »
then P; e X for all 4 since any reflective replete
subcategory X of a‘category o 1is closed under formation
of retracts in & 4 so M{Rt is a reflection of P in
the smaller full subcategory of X generated by all the
products of IQ (such a reflection will be denoted by
Biey P )s Thus we have got the following (trivial) as-
sertion:

Proposition. Let X, Y be dense subspaces of TT{P;}.
If any continuous mapping on X or Y into Py can be con-
tinuously extended to T 4P, 3 , then any homeomorphism on
X onto Y can be extended to an autohomeomorphism on
TM4{P % and, hence, X and Y are not homeomorphic pro-
vided TM{P3~X and TM{Py}¥ =Y are not homeomorrhic.

If we omit density of X, Y we must assume instead
of it that the extensions are unique., Usually one meets den-
ge reflections so that we shall investigate only the cases
indicated in the assertion.

In the sequel we will be interested in the assumption
of Proposition and shall have in mind that it enteils exten-
sion of homeomorrhisms and "non-homecmorphism" of comple-
ments.

By ¥, w,d, 4 we shall denote thz following car-
dinal functions: pseudocharacter, weight, density, uniform

character, respectively (see [14]1 for these ond other car-
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dinal functions on topological spaces).

A standard way how to obtain mapping-extensions from
subspaces of a product is to factorize them via a subproduct
where it is easier to extend the factorized mapping (e.g.
[51,[10]). One usually assumes that the projection of the
subspace is the whole subproduct (e.g.[31,[51). Since this
assumption will be used very often throughout the paper we
will formulate it before the si;atementé:

Definition. Let X be a subspace of a product- T{P; |
iel} and « be an infinite cardinal. The subspace X is
said to have the property Vi(et) i.f.tu,fxlr'mP{l 1ed}
whenever Jecl, card J=<ox .

As we shall see from the following Lemma the property
Y(x) entails inductive generation of all the projections
ey X—TiP; |4 e T}, canel J = o , 80 that any facto-
rization of a continuous mapping on X via L is continuous,.

Lemma, A subspace X of T P l4iel? has V() if
and only if syl U AX] =, [U] for any canonical
open set W in M{P;lie€l} and any J I ,cand I <e .

Proof., Let h=TM{Uzli e I}, xepmy[U] ,cand J< .
In accordance with [3] we denote R(W)=44i(U; % Py} 4then
cand J'< o for J'= JUuR(WU) . Choose X' e gy [UT such
that qmyx’= x ., Y(«) implies the existence of an x"eX
such that qu g, x” & x’, Clearly, x“e 4 n X =and
g x” - x .

Corollary., Let X have V(&) in T{Pil4 €l} and
Jel s cand J < «x ., Then the projection m,:x—»
—+ 4P 1lieJ?t ig open.
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If X has V(x) in W{P;li eI} and £:X->7
can be factorized via ey for a Jecl,candd<ox ,we
can extend £ continuously onto T4P;|i €13} into Y
- e.g. [3] (the whole projection 4uw,:TM4Pliel} —>
— T{P; i€ J3 followed by the factorization)., There are two
general theorems about factorizations of such mappings £
- for references and history see [3],[21] (a space X is
said to be pseudo- e¢ -compact [8],[13] if any loccally fini-
te open family in X 1is of cardinality less than « ).

Comfort-Negrepontig [31: Let o be a regular uncount-
able cardinal and X be = subspace of M{ B 14 € 13§ with
V() .If X is a pseudo- o¢ -compact, then any fe C (X . p
Y  metrizable, depends on less than o« coordinates,

Gleason [13]: Let X be an open subset of M{P;li eI}.
If all the P; are separable, then any fe C(X,Y),Y of
countable pseudocharacter, depends on countably many coordi-
nates,

Moreover, W,W, Comfort and S. Negrepontis proved in [3]
that under the assumptions stated above ( o¢ regillar uncoun-
table, X has Y(x) ), X is pseudo- & -compact if and on-
1y if any finite subproduct of T4FP; |{eI$% is pseudo-
o -compact. So this condition on X is in fact a condition
on £P;¥ as in the Gleason s theorem., Only because of shor-
ter expression we shall use the condition formulated for X .
Next, we shall give slight generalizations and comments to
both theorems,

It is seen from the proof of Com;fort-Negrepontis' theo-
rem [3] that one needs weaker condition on Y than that of

metrizability, Define a cardinal function 4 in the follow-
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ing way: oY < oc if there is a system {u., 1§ < B3,
(3 < o ,of reflexive relations on Y sueh that

N4ufetlg cUg’olle [§ < B} 1is the identity and that
ugm is a ncighborhood of X for any X € X, §<p3.

- Bvidently, %Y & ¢y (Ay,YxY) & Y &Y (even
Y& uY’ for any coarser space Y’ ); y(Ay,YxY) =Y
provided any neighborhood of Ay in Y Y is uniformi-
zable, i.e., if any open cover ¥ has an open refinement
$ with the property:xe€B,,4€B,, BynBy# 7, B, e B ==
= (x,4)cA foran A eQ [1],[18]. In particular,
¥ Ay, Xx Y)=aY if Y is paracompact or a 2 -product of
complete separable metric spaces [5] (for further cases see
[171).

Theorem 1, Let o« be an uncountable regular cardinal
and X cT4{P, i el} have V(e), If X is pseu-
do- ¢ -compact, then any £e€ C(X,Y) , #+Y < < , de-
pends on less than o coordinates.,

We shall now give the Gleason ‘s theorem a form similar
to Theorem 1 (for o« isolated and X=TT{Rlie It see [14]).

Theorem 2, Let o be an uncountable regular cardinal
and X c T{P; |4 e1? have V(x).,If dPj < for all
4e¢l ,thenany £ C(X,Y) , Y = x depends on
less than o« coordinates.

Proof. The assumption on ¥ implies the existence of
Jxcl, card Jy < , forany‘.xex,suchthat
£x = £y whenever 4 € X , M_;,er- = fwy, % . Teke
now an arbitrary nonvoid J, € I with cand Jp < e« .

Since density character of T{P; |4 & Jo ? is less
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than « (oc is regular), there is a set 8j of cardina-
1lity less than oo and dence in M4 P; 14 € Jo ¥ ; take
S, to be a subset of X such that My, is a bijec-
tion on S, onto S5 . Now put = Jou U{Jdx lx€ S#.
Evidently, caxd Iy << and we can construct a set $4
for J;, in the same way as S, for Jo . By an inducti-
ve procedure we obtain sequences 4 Jp ¥ (increasing),{S,?
such that Jpc I, Spc X, card Jn < x, card S, < x
and Py, —meps S injectively onto a dense subset of
M{Plie Ip¥. Put J=U{Ipn} , S=U{Sp? . First,
we shall notice that uw,[S8] is dense in M{F;li € Ji
and that £x = f4  vhenever X,y € X, pu,X = i,y € i, (S,
Indeed, if U is a canonical open set in TM{P, l4i € J§¥ ,
then R(U)ec Jy, for anm and so there is an A e S,
such that qu, A € A, LUI 5 it follows pr,m e U .
To prove the second assertion, take X, 4 € X  with p,x=
= fu,ny € v [ 81 ; there is an m and A € Sy such that
M;,/a SN = 41.«,39, and, consequently, 4"‘.7"3'%," = 41"3,'9—
and £ = fx = £y by definition of J, . Choose now an
arbitrary x,4 @ X such that fy,% = gLy 4 . For any
canonical neighborhoods 11., V of X, 4 respectively the-
re is an 2’ € ey [81A oy (U A pry[V] 5 by Lemme,
there are Ayy € Un X, Yy € VaX such that
Mogbhyy = gy, = »° . The nets fay,§, fay,}
~ converge in X to X, 4 respectively and £uu,v = i“’u,v g
Hence £x = £4 . The proof is complete. .

The condition " dPj « & for all 4 " in Theorem 2

implies pseudo- & -compactness of any dense. subspace in
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T{Pili eI} and hence, the condition on X in Theo-
rem 1, On the other hand, the condition arY < oc  4in Theo-
rem 1 implies the condition Y < o« in Theorem 2. In both
cases the converse implications are false (take « = @y, FP; =
= To, for all4 and Y = Ta,, ). But To, is a bad coun-
terexample to the "union" of both Theorems; details and ge-
neralizations will appear ina forthcoming paper.

The condition V{(e) 1is essentially set-theoretic.

We will show now that V(&) follows from "nice" topolo-
gical conditions. For instance, V(ay ) implies Gd—-densi—
ty of X in TT4{P; |4 €l% and the converse is true provi-
ded all the BL are of countable pseudocharacters; similar-
ly for higher cardinals,

If puy[X] &2 T4{P, |1 € J% , then the comple-
ment of X contains a homeomorph of TT{ P 41 eI ~-J%
as a retract. Thus, if V 1is a topological property pre-
served by retracts and such that no space M{P liel1-J7,
carcdl J< o has ¥V but T{P;I4{ elI%~-X has, then V()
for X holds,

First take V to be a property described by cardinal
functions, Let @ be a cardinal function being not increa-
sed by retracts; if @ (M{P;lieli-X) < minfg(T4{E; |
l4 €I=-J3)lcand J=x% , then V() holds., Since
P(MiPliel-I3) ZrunfgPliel-I1 it suffices to re-
quire @(M{Pyli e I$-X)<minfoupigPiliecl-T3I
leard J< « 1 and, in particular, g(TT{P;liel}-X)<
<min {@P liel? .

To simplify statements we shall suppose for a moment
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that Pz = P forall £{ eI &and card P> 14 . Without
loss of generality we shall also suppose a) £ oc $ caxd I

The condition Y(ec) (for any o &€ carad I ) is then imp

lied by existence of a topological property VY preserved
by retracts and such that P¥  does not have V and P¥ -
-~ X has V., The above formulas may be given in this case
the following form:

g(PP-X)< P! or 9(P'-X)<gP .

For instance, V(e ) holds if caxd (PI-X) < 2‘“1 or if

d(P’-X) < odP.Alg card I .

Theorem 3., Let P be a space and A4 a subspace of
PI such that q.A -< g:PI for a cardinal function @
being not increased by retracts, If card I >max (dP, yY),
then P'=A 18 C(P'=A,Y) -embedded in P* .

Proof. Put o w (max (olP, Y ))* . Then PT- A
has V(e ) and, by Theorem 2,, any continuous £1PI—A —
— Y can be continuously factorized via 4w, , card J < o
and, hence, has a continuous extension on P! into Y .

Corollary 1,\Let P be a space and A a subspace of
P! such that @A < 9?1 for a cardinal function being
not increased by retracts. If caxd I > max (P, ¢ P) ,
then (p (P'-A) = P! .

By a (8 -compact space (in the sense of Herrlich [111)
we mean a space each of its X -ultrafilters with 8 -inter-
gsection property is fixed. ‘

\ Corollary 2., Let P be not a ﬁ ~-compact space and
let card I > max (dP,yP) . IfA isa [ -com-
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then [p (PT-A) = P* .
Proof. Put @ to be the compactness degree in the

pact subspace of P? "
sense of Herrlich [11], i.e., g?? is the first cardi-
nal « such that P is o -compact.

Corollary 3., Let P be the space R of reals,
cand I > @, and A » B non-homeomorphic subspaces of RI
with cardinalities smaller than 2°*%! , Then X' -4,
R!-3B  are not homeomorphic,

Putting (3 = @, in Corollary 2 we obtain the follo-
wing generalization of Theorem 1 in [22] (for a more gene-
ral version see Theorems 4, 6 in the sequel):

Let P be a realcompact non-compact space and A be
a compact subspace of a product P! vhere card I > dP.
Then » (PI-A) = P! .

Choose now other properties for V , €¢8e to be nor-

mal or a M -space.

Theorem 4. LetIP be not compact, e« > arP . Then .
Bp (P~ A)=P¥ .for any normal subspace A of P% .

Proof, If V 1is the property "to be normal', then by
[191,[15], P%® does not have ¥ provided P is not com-
pact and « > w P, Clearly « => max (dP, ¥ P) .

A similar assertion can be formulated for the property
"to be a R -space", First we must prove the following ana-
logon of the Noble s theorem:

Theorem 5., Let P be not compact. Then there is o
such that P* is not a fe -space. _

Proof, Suppose first that P is not locally compac‘t.
Let X, be a point of P  without compact neighborhood,
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X, € P=(x,) and let € ©be a system of compect sets
in P containing Xp and such that any compact set contai-
ning X, 1is contained in a member of € . We will show that
p¢ is not a & -space. Ve may suppose that Cp = (x,)e €.
For finite F o € , denote Ap ={{g,te P€ e = Xp
for C € F-(Cp),yp=xq for L€ €=(Fu(lp)),
g, € X-UF?,; A=USfAIFc¥,F finite} .
(1) 4x,3 € A let P be a finite subset of ¢,
F=(Co)CqyeeyCp) and U;, 4 = 0,...,m ,be neighborhoods
of X, in P ; then the point {’9'(:3 s where 4o = X4 for
Ce€~F,nyp, =X ford=4..,m, gc, € Ug-UF
( X has no compact neighborhood !), belongs to Ag N
ATT{U,ICe¥€} , vhere U =X for Ce €-~-F ,
Ue, = U; .
(2) X compact in P, {%,} € K=>{x,3&€ KA A : there
isa C,e<€, C;%Cp suchthat Cq o> prg, [K] ond a
neighborhood W of X, not containing X4 ; assume that
{ycleXKnAnT{UyICe €}, vhere Ug m X for Ce € -
= (CoyCq), U™ Ue, = U . Then {ycte Ap for a finite
Fec¥€ y clearly C, « P because Yo, + X4 and, con-
sequently, ry,ca ¢ C, but this contradicts to Y, €
€ e, LK1 Cy
If P 4is locally compact, then Pa’ is not locally com-
pact and we may accept the preceding consiruction for Pa'
instead of P . The proof is complete.

Define 4P  to be the least cardinal of a base for
the ideal of compact sets in P and, if P is not compact,
F not locally

#'P=mimn {yFP | F closed in P%
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compact ¥ . Then we have proved:

If P 1is not compact (i.e. 3P & o, ),then B*
is not a % -space provided o« & ‘P .

It is easy to show that yP g 7(1’""’) € caxd ey 7P
(the cardinality of the set of all countable subsets of g*P,
which is 2"”.7]’ if ecof P > @, ) and ‘P £
& 7(1"") ; thus, mostly, it suffices to assume « & 2“” .
« 9P . If the continuum hypothesis does not hold, then it
may happen that 4 ( Py < 9%, P even for non-com-

@
pact spaces (e.gs 7 ( T‘,_‘o) =7 T‘,,q = w, )3 under
continuum hypothesis always ¢ ¢ P%) = 2%, r P when-

ever cofyP > @y or P = @, since ¥ (P) > w,
provided P is not compact. It is shown in [16] that if P
is not countably compact, then P“”l is not a Ak -space.
This assertion does not follow from that of ours. If conti-
nuum hypothesis is not true then it may happen that sgtill
T’N - 2% Indeed, if ¥ is closed in NN and not lo-
cally compact, then B contains a closed subset homeomorph-
ic to the space T = N x N v (@) , where points of Nx N
are isolated and any neighborhood of e contains all the
(m)x N, m e N , except finite number . Thus g'N= T,
Since compact sets in T  are of the form (o) u A , where
An((m)x N) is finite for every m , the mroblem of
finding 7T reduces to finding small cofinal subsets in
the system of all functions £t N —> N , ordered point-
wise, As was communicated to the author by B, Balcar and P,
Stépdnek, there is an ultrafilter on N  such that in the

corresponding ultraproduct-model any such cofinal part is
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of cardinality 2%

It is easy to see that Theorem 5 and remarks following
it remain valid in larger classes of topological spaces then
completely regular Hausdorff (of course, in dependence on de-
finitions of local compactness and of R-spaces).

Theorem 6. Let P be not compact, a > max (3’P,dP,yP).
Then ﬁ,(?“’-k) = P* for any M -space A in P%* .

Corollary. Let o be an uncountable cardinal and A, B
non-homeomorphic f¢ -spaces or normal spaces in R® (in par-
ticular, metrizable or compact). Then R* — A is not ho-
meomorphic to R¥* - 3B .

Similar statements can be given e.g. for the case when
A,B are zero-dimensional subspaces of R, etc. (In gene-
ral, if X 1is a productive and closed-hereditary class of
spacds, i.e. epireflective in Top, , thenP¢ X, Ae X
entails P! = A has V(x) for all w g eard I .)

N, Noble proved in [20] that if X ey Piliell,
an}; finite subproduct of {P;§ satisfies countable chain
condition and any countable subproduct is perfectly nommal
realcompact, then X = T4 Piliel} if and only if
X is @Ggp-dense in TM4{ P; |4 € 13 4 the conditions are
gatisfied if e.g. all the P4 are separable metrizable,

We shall prove now a more general

Theorem 7. Let X ' be a subspace of a product T{P; l‘
|*€l} of realcompact spaces with countable pseudocharac-
ters and let all the finite subproducts of {Py} be pseu-
do- @, -compact, Then VX = M4 P;l4+ €13 if and only if
X is Ggp-dense in T4 P; |4 eI .
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Proof. The nontrivial part is the "if" part, If X 1is
Gy -dense in TMA{P; [ eI? , then X has V(@) be-
cause ¥ P; = @, for all 4 . By Comfort-Negrepontis  theo-
rem we obtain directly that X 1is C -embedded in T4{P; |
liel} .

Corollary. Let X ©be a subspace of a product M{P; %
of realcompact separable gpaces with countable pseudocharac-
ters, Then. VX =T4{P;? if and only if X 1is Gy -dense
in T4P;5% .

As was remarked earlier, W,W., Comfort and S. Negrepontis
proved in [3]1 that X e M{P; ¥ with 'V'(d),) is pseudo-
« -compact, o« regular uncountable, if and only if any fi-
nite subproduct is pseudo- « -compact. The corresponding
theorem for o = @, 1s not true [2],[9] in general, but
holds in special impar tant cases - see [61,L7] for the case
of compact‘ diserete P; . We give here a generalization of
the Efimov-Engelking ‘s theorem,

Theorem 8. Let P; be compact for all4 €I and Xc
cT{P;liel} have V(w,) . Then X is pseudocompact and
VDX = X =T{Pli eI} .

Proof. It suffices to prove that X is C -embedded in
T{P; |4 € 1% and this assertion follows directly from the
Comfort-Negrepontis * theorem.

Corollary 1, Let X be a dense subspace of a product of
compact metrizable spaces Pi, ., Then X is pseudocompact if
and only if X is G4 -dense in T{ Py 3 .

Proof. The property "X is Gg ~dense in TM4P; 3 " is
equivalent to " X has V(@,) " in our case. If X 18§ pseu-
docompact, J c I , cand J & @, , then ey [X]1 is a
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dense pseudocompact subspace of the compact metrizable
T{P 1i €3} and, hence, quu,[X1=TM{P;|4i e I3 . The
converse implication follows from Theorem 8,

Corollary 2, Let X be a dense pseudocompact subspace
of a product of compact metrizable spaces F; . Then X =
= BX =TM{F } .

The same procedure may be used if we know that the pro-
duct is pseudocompact.

Theorem 9., Let the product TT{P; |4 € 1% Dbe pseudo-
compact and X « M4{P; |4 e I } have Y (@w4). Then X
is pseudocompact,.

Proof. X is ( -embedded in T{P; l4i eIt .

Corollary. If X c T‘;: has V(w,), then X is pseu-
docompact,

At the end we shall give an analogon to the Glicksberg ’.S
theorem on BTM{P; 3 [10] (it should be noted that our re-
sult is analogous to a corollary, not to the main theorem in
[10]). The ot-compactification of X [11] is denoted by
faX (Leee, X fBeX e X, fgX is the set of
all ¥ -ultrafilters on X with oc -intersection property).
First a lemma (for two factors and o = w,; see [4]).

Lemma, Let T 4P; 1 be C*-cmbedded in T4, P ?.
Then B M{Pyt =TIl P53 .

Proof. It is proved in [12] that o -compact spaces form
the epireflective hull in Top, of the spaces b L (n),
f < « ,where 1 denotes now the real interval L[ 0,11
and 4 is a point of I” . Thus it suffices to prove that
1f TW4P;3 dis C* -embedded in T{ B, P; 3 , then any
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£: T{P; t —> ) L (n), B <o« , can be continuous-
1y extended to T{ B4 P33 into ;L (n) . Let 8 < «,
fi T 4P 1 —>1%(p) .Then cach pg o £ (quug: I™(p)—>1
is the § s projection, g < 3 ) has a continuous exten-
sion §¢:MeBe Py 3 —> I Put ¥= T4 Fg |
1§ <pl,ie. Todn—{Fuxll i T{aP; F—I0 .
Suppose that A = £-1 [pl s f . Wemay assume that the
index set of {P;} 1is the well-ordered set {"l I'rl < 1.
Let {zn’}cA and {np3c€q|ﬂ<73 be the
set of all indices ® such that =z, & P, . We shall de-
fine inductively a net £<£ z‘:; P law } of points of A
“ . «

such that Zy € P"L for all 7 S 429_ 3 a‘;,l = zn for
n & {q«} or m > m,  and such that % = fx.f,i” for
We<w'ym&ne Fo @ =0 there is a zp e Py,
such that (z?,zi &« A , where x%_- %, for m % m,,

i b (n
for otherwise f % flxPp A A c fBc Py, = Pn, ere
Bx Py, 1is the copy of (¢ Pp, by embedding {x ~— 4X,3I

—~
IM’s X, Xp = 2y for g = m,t and similarly P’lg Yo
which is impossible because, in that case, f/P'l, : ?n —
o
— 1P () and has the unique continuous extension
£/3, P, [AE —> I~ () . Suppose that {25 } are
Ba Py, i Puxly, Rl "

lefined for all @ < @ and put t = {t,=Lim {{xy 31

@ < @ % (the mnet {{zgil‘w< @ 3 is coordi-
rate-wise almost constant). Then t € A and we can con-

struct {z‘;’ 3 from t, g in the same way as {z?,lf

from {2zy4%, Mo 3 { z‘,,al: $ has the required properties.
The limit &m 44 z"{ Flowd is a point of
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AnT{P;}% - a contradiction.

Theorem 10, Let W{P; (4L € I} be pseudo- @, -com-
pact. Then B TM{P;liel} = Miflx P;li€ 1% if and
only if [flg MEP;li 6 J3 = M4BPyld eI} forall
Jel, card I < @, .

Proof. One implication is clear. To prove the other,
by the preceding Lemma, it suffices to show that T £ Py |
4 eIt 1 C* -embedded in TMiB P; |4 € I3 . 1If
£: M4{P;14i€I3—10,11 then, by the Comfort-Negrepon-
tis " theorem, £ = £o r, fora Je I, cand J & ay ;
by our condition £’ can be extended on MR P; 14 e J}
and, hence, £ can be extended to M{B,P;l4 e I3 .

It may be interesting that under pseudo- @, -compact-
ness of the product, the commutation of T with [, de-
pends on countable subproducts for any o « In the Glicks-
berg’s theorem, i.e. o« = @, ,there is no loss of genera-
1ity in assumption that the product’is pseudo- w, -compact
but, clearly, this is not the case for o« > @, . The only
generalization of Theqrem 10 we know is to put any uncoun-

table regular o& Iinstead of w, .
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