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ON INFORMATION IN CATEGORIES

Miroslav KATETOV, Praha

In this note we consider real-valued functions defi-
ned on morphisms of a given category and satisfying cer-
tain natural conditions. It is shown that if the category
in question is that of all finite non-void sets, then eve-
ry such a function is of the form well-known from the in-
formation theory.

Terminology and notation. For basic concepts concer-
ning categories we rafer to [3]. The classes of objects
and morphisms of a category ¢ will be denoted by 0B <
and Moeph € , respectively. Letters £, g, , , possibly
with subscripts, will designate morphisms of ¢ . The do-
main of e morphism (in particular, of a mappiné) £ will
be denoted by Df , A sum (product) of £;,, 4 =»1,..., m ,
will be denoted by £, + ...+ £4 (by £4,%x 0. xfm )
Sometimes we will write X £; instead of £, 4 ... + £,
and mf instead of £ +.,.,,4+ £ (m times). If £ is
isomorphic to 9 (in the sense that there are isomorphisms

My, by, such that £ = J,qh,), we wite £t g .
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The cardinality of a set X will be denoted by IXI.
If X,Y are non-void sets, |Yl =4, then the (unique)
mapping £: X—>Y  will be denoted by £ (X,Y) or by
(X)),

The set of all real numbers will be denoted by R ,
that of non-negative ones by Rt , For an X > 0, 1094(
is the dyadic logarithm of X y we put Olog C = 0,

Definition. Let € be a category. A function @ :
'W‘f—* R* will be callzd an ID-function (ID stands
for "information decrement") for ¢ if the following
conditions hold:

(1) fa~ ¢ implies @ (f) = @¢(g) ;

(2) o@(fg) @ ¢(g) provided fg is defined;

(3) if £ =1+ .00 + £ and all Df{  are mutual-

ly isomorphic, then @ (f) = -:;Z @(fL)

(4) if ;v is a product of £ and 9 , then
Plh) = 9(£) + @(g) .

Conventions., If € 1is the category of finite non-void
sets and @: Motph € —» R* satisfies (1), we will put:
(i) for any X e O3 €, @ (X) = @ (4(X)); (i1) for any
m=i,2,... ,9(m)=g(X) ,vhere Xl = m .

Theorem. Let € be the category of all finite non-
void sets (with mappings as morphisms). A function P
t Mosphy € —> R* is an ID-function if and only if there is
a number ¢ & 0 such that, for every morphism £:A—B
we have

c

= - -4
PE) = T ¢S 170 | Log 1E 01
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Proof. It is easy to see that every @  of the form
described above is an ID-function, To show the converse,
we need some lemmas., In what follows, € is the category
of finite non-void sets.

Lemma 1. Assume that ¢:Howph € — R* satisfies
conditions (1),(3) from the definition of an ID-furctlion.

If £:A—B is surjective, then

1 - -1
g(f)-mbszf‘if Llgs=1p) .

Proof. If & e€B, put mp = (£7'41 . ‘ut m= Smy,
b=Tmy., by = bm}; . For every lreB , putgy=n,4ilmg).
Clearly, for every reB, @(gy)= ¢(i(my)) = p(£7'4) ,
\P%J-h , Put £,=a«§‘A Feq s £ = »f ., It is =28y to

see that £ & £7 , Since @(£) = % Smy @(gy) ,

@(£”)m @(£) , we obtain
1
FE) = — = my P (q) .

This proves the assertion.

Lemma 2. Assume that @: Moeph € — R* satisfies
conditions (1),(2),(3) and that @ (4) = 0 . Then, for
m =4,2,.,, , we have

molm)&€(m+1)g(m+1) .

Proof. Let A,B, C Dbe sets, |Al= ma+4,|Bl =2,
[Clm4 .Choose g.sA—B, g=i(m)+4(4), £:B— C , Clear-
ly, 9(fg) = g(m +4) , and, by condition (2), we have

9(fg) = @(g) . By Lemma 1, @(g) = 71%:-—71— @ (m) .

Tris proves the assertion,
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Lemma 3., Let L's be a non-negative real-valued func-
tion on the set of positive integers., Assume that
my(m) €& (m+Dy(m+d) for m = ? [ R and that
¥ )= m.y(p) for p,m = 4,2,... . Then, for every

m = 4,2,... we have

Y(m) m y(2). Logm .
The proof is standard and may be omitted.

We are now going to prove the theorem. Let @
: Moy € — R* satisfy (1) - (4). By Lemma 2, we have
mg(m)€(m+4)g(m+4) for m =4,2,... . Since (4)
is fulfilled, we have @ (™) = mg(p) for pp,m =
=4,2,.,., . Hence, by Lemma 3, g(m) = c log m ,vhere
¢= @(2) . Lemma 1 now implies that, for eay surjective
£1A— B , we have

2 £ og £-1 0|

If £sA—3B is an arbitrary morphism of ¢ , let
4:£(A)—> B be the embedding and let x:B—> £(A) be
such that s (x) = x for all x € £(A). Then G m nf
is surjective, £ = jg . By condition (2), we have P(f)m
= @(g.) , which proves the theorem, '

Remarkg., 1) Clearly, there exist categories for whiph
there is no ID-function (except 0 ). An example: the ca-
tegory & of finite-dimensinal linear spaces (over some
fixed field). However, for this cate'gory there exist fupc-
tions Morph & — R* satisfying (1),(2) and (4), -
2) It may be of some interest to investigste those catego-
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ries for which there exist non-trivial ID-functions. =-

3) Since the cartesian product in the category of sets
plays two distinct roles, that of categorical product and
that of tensor product (see e.ge. [21,[1]), it might be in-
teresting to investigate, in closed categories (see e.g.
{21,(11), another concept of an ID-function with (4) re-

placed by an analogous condition on tensor product.
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