

Werk

Label: Article **Jahr:** 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0013|log70

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 13,4 (1972)

ON INFORMATION IN CATEGORIES

Miroslav KATĚTOV, Praha

In this note we consider real-valued functions defined on morphisms of a given category and satisfying certain natural conditions. It is shown that if the category in question is that of all finite non-void sets, then every such a function is of the form well-known from the information theory.

AMS, Primary: 94A15, 18B99 Ref. Ž. 8.721, 2.726.1

The cardinality of a set X will be denoted by |X|. If X, Y are non-void sets, |Y| = 1, then the (unique) mapping $f: X \longrightarrow Y$ will be denoted by i(X, Y) or by i(X).

The set of all real numbers will be denoted by \mathbb{R} , that of non-negative ones by \mathbb{R}^+ . For an x>0, $\log x$ is the dyadic logarithm of x, we put $0\log C=0$.

<u>Definition</u>. Let $\mathscr C$ be a category. A function $\mathscr G$: : Morph $\mathscr C \to \mathbb R^+$ will be called an ID-function (ID stands for "information decrement") for $\mathscr C$ if the following conditions hold:

- (1) $f \approx q$ implies g(f) = g(q);
- (2) $\varphi(fq) \ge \varphi(q)$ provided fq is defined;
- (3) if $f = f_1 + ... + f_n$ and all Df_i are mutually isomorphic, then $g(f) = \frac{1}{n} \sum g(f_i)$;
 - (4) if h is a product of f and g, then g(h) = g(f) + g(g).

Conventions. If $\mathscr C$ is the category of finite non-void sets and $g: Morph \mathscr C \longrightarrow \mathbb R^+$ satisfies (1), we will put: (i) for any $X \in \mathscr C$ $\mathscr C$ $\mathscr C$, g(X) = g(i(X)); (ii) for any $m = 1, 2, \ldots, g(m) = g(X)$, where |X| = m.

Theorem. Let \mathcal{C} be the category of all finite non-void sets (with mappings as morphisms). A function g: $\mathcal{C} \to \mathbb{R}^+$ is an ID-function if and only if there is a number $c \geq 0$ such that, for every morphism $f: A \to B$ we have

$$\varphi(f) = \frac{c}{|A|} \sum_{b' \in B} |f^{-1}b'| \log |f^{-1}b'|$$
.

<u>Proof.</u> It is easy to see that every \boldsymbol{g} of the form described above is an ID-function. To show the converse, we need some lemmas. In what follows, $\boldsymbol{\mathcal{C}}$ is the category of finite non-void sets.

Lemma 1. Assume that $g: Morph \mathcal{C} \to \mathbb{R}^+$ satisfies conditions (1),(3) from the definition of an ID-function. If $f: A \to B$ is surjective, then

$$\varphi(f) = \frac{1}{|A|} \sum_{b \in B} |f^{-1}b| \varphi(f^{-1}b) .$$

<u>Proof.</u> If $l \in B$, put $m_{l} = |f^{-1}l|$. Fut $m = \sum m_{l}$, $h = \lim_{l} h_{l}$, $h = \lim_{l} h_{l}$. For every $l \in B$, put $q_{l} = h_{l}$: (m_{l}) . Clearly, for every $l \in B$, $\phi(q_{l}) = \phi(i(m_{l})) = \phi(f^{-1}l)$, $|Dq_{l}| = h$. Put $f' = \sum_{a \in A} q_{fa}$, f'' = hf. It is easy to see that $f' \approx f''$. Since $\phi(f') = \frac{1}{m} \sum m_{l} \phi(q_{l})$, $\phi(f'') = \phi(f)$, we obtain

$$\varphi(f) = \frac{1}{m} \sum_{k \in B} m_k \varphi(q_k)$$
.

This proves the assertion.

Lemma 2. Assume that $\varphi: Morph \mathcal{C} \longrightarrow \mathbb{R}^+$ satisfies conditions (1),(2),(3) and that $\varphi(1)=0$. Then, for $m=1,2,\ldots$, we have

$$m g(m) \leq (m+1) g(m+1)$$
.

<u>Proof.</u> Let A, B, C be sets, |A| = m + 1, |B| = 2, |C| = 1. Choose $q: A \rightarrow B$, q = i(m) + i(1), $f: B \rightarrow C$. Clearly, g(fq) = g(m+1), and, by condition (2), we have $g(fq) \ge g(q)$. By Lemma 1, $g(q) = \frac{m}{m+1} g(m)$. This proves the assertion.

Lemma 3. Let ψ be a non-negative real-valued function on the set of positive integers. Assume that $m.\psi(m) \leq (m+1)\psi(m+1)$ for m=1,2,... and that $\psi(\eta^m) = m.\psi(\eta)$ for $\eta, m=1,2,...$ Then, for every m=1,2,... we have

$$y(m) = y(2) \cdot \log m$$
.

The proof is standard and may be omitted.

We are now going to prove the theorem. Let g::Mouph $\mathcal{C} \to \mathbb{R}^+$ satisfy (1) - (4). By Lemma 2, we have $m \cdot g(m) \leq (m+1) \cdot g(m+1)$ for $m = 1, 2, \ldots$. Since (4) is fulfilled, we have $g(n^m) = m \cdot g(n)$ for $n, m = 1, 2, \ldots$. Hence, by Lemma 3, $g(m) = c \cdot log \cdot m$, where c = g(2). Lemma 1 now implies that, for any surjective $f: A \to B$, we have

$$(f) = \frac{c}{|A|} \sum_{k \in B} |f^{-1}k| \log f^{-1}k|$$
.

If $f:A \to B$ is an arbitrary morphism of \mathcal{C} , let $j:f(A) \to B$ be the embedding and let $\kappa:B \to f(A)$ be such that $\kappa(x) = x$ for all $x \in f(A)$. Then $q = \kappa f$ is surjective, f = jq. By condition (2), we have $\varphi(f) = \varphi(q)$, which proves the theorem.

Remarks. 1) Clearly, there exist categories for which there is no ID-function (except 0). An example: the category $\mathcal L$ of finite-dimensinal linear spaces (over some fixed field). However, for this category there exist functions $\mathcal L \longrightarrow \mathbb R^+$ satisfying (1),(2) and (4). -2) It may be of some interest to investigate those catego-

ries for which there exist non-trivial ID-functions.
3) Since the cartesian product in the category of sets
plays two distinct roles, that of categorical product and
that of tensor product (see e.g. [2],[1]), it might be interesting to investigate, in closed categories (see e.g.
[2],[1]), another concept of an ID-function with (4) replaced by an analogous condition on tensor product.

References

- [1] S. EILENBERG, G.M. KELLY: Closed categories, Proc. Conf.Categorical Algebra (La Jolla, Calif., 1965), pp.421-562. Springer, New York, 1966.
- [2] G.M. KELLY, S.MacLANE: Coherence in closed categories, J.Pure Appl.Algebra 1(1971), 97-140.
- [3] B. MITCHELL: Theory of categories, Academic Press, 1965.

Matematický ústav ČSAV Žitná 25 Praha l

(Oblatum 23.11.1972)

