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ON A CONNECTION WITH TORSION ZERO x)

Bohumil CENKL, Boston

1. The existence of a connection without torsion on
the quotient bundle of a distribution on a manifold is
equivalent to the integrability of that distribution. Mo-
re precisely, suppese that M is a (% -manifeld (all
maps and all ebjoects will be C® threugheut this paper)
and E a subbundle ef the tangent bundle T ef M .

The distributien E ia integrable, i.e. E is tangent

te the leaves of a foliatien en M , if and enly if there
existes a linear cennectien en G = T/E which has zere
tersien. This nete contains an attempt to give some alge-
braic criterion for the existence of a torsionless connec-
tion on. @ for a given diatribution E . The main result,
necessary and sufficient conditions for the existence of a
torsinnless connection, is stated in terms of a twisting
cochain ¢ from the coalgebra {3\_’ , @ssociated with the
Weil algebrs [2], to the exterior algebra E of differen-
tial forms on the principal bundle P associated with @,
x) This research was partially supported by the National
Science roundtiién,. under Grant Number GP-16354.
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and its affine extension.

The existence of a torsionless connection on G =
= T/E in relation to the integrability of E will be
discussed elsewvhere.

An analogous criterion for the integrability of a
complex analytic bundle. E — T (M) aver a complex
analytic manifold M can be given in the same way.

Furthermore, let us assume that M is a 2m -dimen-
sional manifnld with an almost complex structure on it.
The existence of a torsionless connection on the almost
complex principle bundle sn: P -—> M , with the struc-
ture group GL (m,C) is a necessary and sufficient
condition for the almost complex structure to be integrab-
le. Therefore an andlogue of the condition mentioned above
would be relevant for the existence of integrable almost

complex structure.

2. let y: P— M be a principal bundle with the
structure group G = GL (g, R) . Each slement x of
the Lie algedbra G of G defines an associated funda-
mental vector field, denoted also by x , on P . It is
the vector field tangent to the orbits of the right action
of the one-parametric subgroup { ecnr tux # of G on
P . Then on the exterior algebra of differential forms
E -"g’ E® on P there are well defined operations:

d - the differential (antiderivation of degree + 1 ),
4 (x) - the interior product (antiderivation of degree
-1 )tor x € G , L, - the derivative with res-
pect to x (derivation of degree 0 ).
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The Weil algebra of the Lie algebra G is the ten-
sor product W = S @ A of the symmetric algedbra S
and of the exterior algebra A of the dual G* of G .
It is a differential graded algebra with antiderivation
d” of degree + 1 , and antiderivation i (x) of deg-
ree -1 , and derivation L, of degree 0 ; for all
x € G . Let us identify s? with A" via the obvi-
ous isomorphism % : A’ —> 57, and for X' e Al
denote X' = M, (x') .

Definition 2.1. A linear connection on the principal
bundle o : P — M is a linear mapping

(2.1) £: A'— E1

such that for any x € G and x' € G* = A"  holde:

(1) £(x)e f(x') = 4(x)x'

(2.2) (4i) Ly« f(x") = f(L,(x")) .

The curvature of the connection £ is the mapping
(2.3) fT:s8"—>E?

given by the formula

(2.4) F(X) = d(£(x")) = £(Ix")

‘Let us denote by P,  the affine extension of P
and by £ % the affine connection (linear connoetion on
P, ), associated with f . Its curvature will be deno-
teaby ¥, . ama G, ,G,,S5,,A,,E, stand for the
corresponding objects for the affine extension. The opera-

tors i, L, d can be extended to the affine extension
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in an obvious way.

A linear connection on P can also be defined by
an l-form « on P with values in G with certain
conditions, analogous to (2.2), satisfied.

The affine connection associated with the linear
connection (given by the l-form < ) is given Sy the
l-form <, such that the diagram

()

+
T(P,) > G,
(2-5) L Ll
T(P) s - G

commutes. And the fact that W, is associated with
is expressed in the following way:

(2.6) L*CJ = o+ 0 ’

+

where 6 is al-formon s : P—> M  with values in
F  (considering the semidirect product G =G+ F ),
which is sero on vertical vectors, and with respect to
the right action on P

(2.7) R3O0 = g6 for any g € G .

If we denote by D the covariant differential of
the connection < , we get the curvature £ and torsion
® forms on P by the formulas

(2.8) Q=20, @ =D6 .

The mapping L*w+ ¢t T(P)—> G, in its dual

form gives
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Proposition 2.1, A linear connection. f together
with a 1-form & induce a linear .mapping

1 1
(2.9) £, : A" > E

such that for any x € G and x/, € A‘+
(1) 4G - £ (x') = 4(x)e !
(2,10) o *
]
(10) Ly« £, (x}) = £, (L, (x}, )

and the mapping

(2.11) f :Al—>2
defined by the formula

(2220 F, (x}) = d £ 6401, (I%,)

is the composition

~

(213) £, =%+ §

of the curvature and torsion of the connection £ .

Proof. The properties (i),(ii) follow immediately
from the definition of a connection. It is enough to notice
that £+ is a composition of a connection £ and a line-
ar mapping £, : A:-’ B! (0« A, <« A, e— A <—0)
which is dual to the l-form 8 .

And the decomposition of f - is easily seen by dua-
lizing the situation. Let §4 &, Dbe two vector fields
on P, Then for any

Xp= Xt xg € Nym A @A, Cdlf, (x,) =, (5, )5, A,>=
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Kd(f +£,)(x' + %) = (£ +£) (F(x'+ x,0), §, A §,> =

= (df(x) + df, (%)) = F(TK') = £(Fwy) = £,(Fxy), 5, A §y0=
= (df(x') - £(Ix'), § A § D +

+Cdf, (xh) = £0d%)) = £, (%), §, A5 > =

=&, (do + [@,0]) (§,8,)) +<x,,db(§,, §,> -

- (%, [08,01(§,, 8,7 =

- (o, B0, 8w i, B (4, 800 =

=xl, (2 @), 8,00 .

3. As was remarked in [2], the notion of a linear
connection makes sense if the exterior algebra E is a
graded diffsrential algebra with an action of the group
G on it. We shall adopt this more algebraic point of
view.

Let S™ be the p -th symmetric product of G*
and A% the g, -th exterior product of G* . Then we
define ’

v -1”% i(S“'@ A%) gor i 1,V =0, V=R .
L 2 X

The vector space V -490 V“" is the cochain complex
over R with tho antiderivation J° (this operator is
defined on the Weil algebra in [2]; it is exteonded to
Vv® by the roquirement d'(V°) = 0) . Let x: R —
— V° be the augmentation isomorphism, and



T=@ 7" , V¢ = y* for i >0, V°= 0,

be the reduced cochain complex. There is a natural DGA
R -algebra structure on V with the multiplication
(6‘193.1)-(0’2®ac2)-6;.6’2®oc1-w2 for

, , 2,
any 6:|®oc1es1®Aq"‘ , 6, ®«x, e S5 @A,

where 6, . 6, is the asymmetric and o, . o, the ex-

terior product. Now we associate with V the DGA-coalgeb-
ra AV . First define gV =R®Ve® (V@ V)®....

Denote by [+;,..., 4, ] anelement « & ... dv, €

eV ® ...87 (m -timea). For an element v € V =

(sTP@ A% ,v= @ let us defino

neg=i24 pigrizd M

%’U’x ®

—_— S
om and dum = + .
nreeisq vf;»g ! Vo, 2 2 L 2

And finally for [, ,...,w, ) define dim [w,..., 25, 1=
=1-m +dim v+ ... + dom 7, . Thia gives a gradation

on the module BV = 490 <(3?)’.'

In low dimensions we get for example

(A7 =R; (3D'=0, pN*=8"® 1,
(3.1)

(7Y =(s'enN ®s'en ® (sTe A", etc.

The diagonal map
7 : pV = AV ® BV
is defined in the usual way
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m
Vi, ,vyl = = [4,..,%, 1L v, 1,

3 i+12°°77 Tm

=0
and for c € coker « , V(e) =T(e)-1®c-c@1 .

Using the antiderivation J° , defined on the Weil algebdra,
and the algebra structure on V we can define an anti-

derivation & of degree +1 on AV by the formula

Aoy s+l v

m
0Ly, vy T = Z (=) T L,y Vg0, U 1 +

——
A g et dom vy,

M3

+ (-1

.
+

L]
£y

Now we are in a position to state
Propogition 3.1. @Y  is a DOA coalgebra with the
coproduct V , grading dim and differentiation & .
The mapping or : gV — ¥ such that =« |V =
identity, 7: ¥® ... @7 (n-timea, m 2 2 ) — 0
J(R)=(0 is a twiating cochain, i.e. in particular

2

Tl ., = O Ly, # 1+ @@ )V u,.., ]

( @ satands for the product in V Y, CLag,eeey v, 1 €

m
eVe..87V (m -times).
Proof. Is rather straightforward by induction.
Let us denote by £* the 4 -th symmetric product of
f and by £™ the f-th exterior product of f . Then de-
fine a linear map (a chain)

bt (BT*—>E* , v 20,

Gt (BY)*IVO... BT — 0 for n&E2, $(R)=0, £ E0



by the formula

(3.2) b, = . ® (FFefd) (mT)

2i+3en

Lemma 3.1. Let E= éaos"' be a DGA algebra, AV =
n

=n?o({31_’)"’ the DGA coalgebra associated to the Weil algeb-
ra, and { a linear connection. Then the chain ¢ =2 ¢,

€ C*(BV,E) ie a twisting cochain, i.e.
(1) € CXpT,E), &,=0, o7 cEX
(3.3)
-2 —
(11) Py = 0 eandd¢, = $,0- (5'22 %, @%.?')V .
Proof. The not so obvious part of tho lemma is the

formula (ii). This is proved by induction. For x =2 we
have the diagram

2
(3V)2 ¢ > E?
(3.4) 3 l .,Ll
(872 ¢ o E?

whers (fn_")" 5 ((3-17)‘5 are given by (3.1). For any
[r]e (V)2 we have the formula $*I([v]1) = ¢’ L[] =

=d$?(Lr1) . Therefore d¢? = ¢23. PFor k=3 we
have to consider the diagram

- 3
(ﬁV)g ¢ = 3
d

%

ws—m

4
(pr* .4 -
where (pV)" ia given by (3.1) and
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(= (s'enNe (s'e1) e enNes@A@(s'®1) @

@@ (s'eA)® (s ) @ (5'® A?) .

For [wv;, 2] + I:nr:sl € ({37)" we get, by the definition,
¢>(Loy, 1+ [o1)= $*(L221)  and from [2] follows that
dp*CLayl) = p¥CLar?D) .

But

——

olm v,
8(lag,m1 + lawy1) = [do, v, 1+ (1)

La,,dv1 +

+[v,. 11+ [dv,1,
and

Pty l +Luyd) = d* Loy vy + I 1)
This shows that
d¢ Ly, d+ [,1) = $*OCLa, vyl 4 Loy ) - P* <Ly .5 1) .
On the other hand

V(L’q,quJ +[o)) = [v; 1@ [ 1,
@(P*® ¢*) (L 10Ly]) = w(E@ 1@ (F@ 1) ([2,1@ [151)=

2 &

=(£2@ N(lv. v 1) = ¢*(Ly. v, 1) .

Therefore
d9® = P*9 - w(P® ® ¢MHT .
Now lot as assume that (ii) holds. We want to show that

nad -
Ay = byyy O- (4-22. $; @ Pros-g?V

We have to consider the diagrn
- x
(V" ¢ — E”*

ol

((3‘7)"" ¢ 1 e EmM
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with

PT*=( @ cs’-@,«i»ac% @ (8" A% ® (5“® A™).
(. @

T+3 IR +u v Vs
Let us take an element [ul+(,1,]1 € (3V)“. By the de-
finition we have d ¢* ((wl+ [u,7,1) = dd™([wl) .
We know from [2] that this is equal to ¢**' &(fwl) =
= ¢"*"(rdw]) . This shaows that

d¢r(lul + v, o2 = $*9Lul + 102 - ™ S (L7, v2]) .

Now we have to look more carefully on the tera

¢**" &(rtw,, v,1) . Ve vant to show that

14
® A% —
an+243q.+v-z+4cs BAD® (S"QA') (ﬂV) = (ﬂV)
E @
(ﬂ?)l‘lﬁ ¢~’1 S E&* 1

k-1
é}, - 6"523 ($; ©® Pyuqy ) s 18 & commutative diagram.

Because V([v,,7,1) = tv,] ® Lo 1 , we get this

easily from the definition. Nemely

-1

@, Z, (97 ® S*F) (L1 ® Lwyd) = &y, (Lo 2,0) .
This finishes the proof.

Lemma 3.2. Let E-,‘?o E* be a DGA algebra, 3V, =
=& (pV,. "™ the DGA coalgebra associated with the
affine oxtonsion of the Woil algobra ( G* is taken as the
basic elemont instead of G* ), and £ , be the linear map
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given by (2.9).
Then the chain ¢, = = ¢y € C*(BY, ,E ) , defined by

the formula

is a twisting cochain, i.e.

(1) ¢F e C*a¥,,E), ¢l =0, & (pT™) e ,
k-2 . o=
(11) ¢). « = 0 and dgf "= ¢fa-&c,’§,’¢:@ o~FIT

Proof. Follows the lines of the proof of Lemma 3.1l.
As G+ is the affine extension of the linear group
G=GL(g,R) ,it has a normal subgroup G, of transla-
tions. So that there is an obvious exact sequence
0 — Go-—)G+—>G—’0 ,
And for the duals of the corresponding Lie algebras, the
exact sequence
0 — G* & Gr— G} — 0 .
The injoction L givea the injective map ( ¢ {37—> [ﬁ’; S

and we have the commutative diagram

BV x
’ 1 / = )
A o,

Now ¢, can be locked at as an extension of ¢ . And the
following is immediate

Theorem 3,1. A conncction f has zero torsion if and
only if tho twisting ochain ¢, ise the trivial oxten-
sion of ¢ .
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