

Werk

Label: Article **Jahr:** 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0013|log69

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae
13,4 (1972)

ON A CERTAIN SUM IN NUMBER THEORY III.

Břetislav NOVÁK, Praha x)

§ 1. Introduction

Let κ be a positive integer and let $\alpha_1, \alpha_2, ..., \alpha_k$ be given real numbers. Let, for a positive integer k,

$$P_{k} = \max_{j=1, 2, ..., n} \langle \alpha_{j}, k \rangle$$
,

where <t>, for a real t , denotes the distance of t from the nearest integer.

Many papers in the theory of numbers are devoted to the investigation of different sums, which contain the expression P_{R} . Let us recall, for example, the papers [2] and [3]. In these papers the investigation was usually restricted to the case $\kappa = 4$. In the previous papers (see [4] and [5]) the sum

$$F(x) = \sum_{R \in \sqrt{R}} R^{\rho} min^{\beta} \left(\frac{\sqrt{x}}{R}, \frac{1}{P_{A}} \right)$$

was considered. Here β and β are non-negative real numbers and we put $min(A, \frac{1}{B}) = A$ for B = 0. Using Lemma 1

AMS, Primary: 10 F 99 Secondary: 10 J 25 Ref. Ž. 1.93, 1.953

x) The author wrote this paper during his stay at the University of Illinois, Urbana.

(see below), which was first proved in the recent paper [1], it has been proved, among other results, that

$$\lim_{x \to +\infty} \sup_{x \to +\infty} \frac{\lg F(x)}{\lg x} = \max \left(\frac{\lg g + \varrho}{2(g+1)}, \frac{\varrho + 1}{2} \right) .$$

Here, γ is the least upper bound of all the numbers z>

has infinitely many solutions in positive integers & .1) (For $\gamma = +\infty$ we put $\frac{\beta \gamma + \beta}{2(\gamma + 1)} = \frac{\beta}{2}$.)

This result, together with other results of the present author yields the solution of the basic problem in the theory of lattice points with weight in rational, high-dimensional ellipsoids (see [5]. Theorems 3 and 4).

Let Q(u) be a positive definite quadratic form in κ variables with a symmetric integral coefficient matrix and determinant D. Let us put, for $\kappa > 0$,

$$P(x) = \sum_{i=1}^{2\pi i \sum_{j=1}^{K} \alpha_{j} u_{j}} - \frac{\prod_{j=1}^{K} \sum_{i=1}^{K} \alpha_{j}}{\sqrt{D} \Gamma(\frac{\kappa}{2} + 1)} \sigma_{i}^{\kappa},$$

where $\sigma = 1$ if all the α_j are integers, and $\sigma = 0$ otherwise. Here the summation runs over all κ -triples $\kappa = (\mu_1, \mu_2, ..., \mu_{\kappa})$ of integers such that $G(\kappa) \leq \kappa$. Then

$$\lim_{x \to +\infty} \frac{\lg |P(x)|}{\lg x} = \left(\frac{\kappa}{4} - \frac{1}{2}\right) \frac{2\pi + 1}{3 + 1} ,$$

¹⁾ In the sequel we denote this value by $\gamma(\alpha_1, \alpha_2, ..., \alpha_n)$.

provided
$$\frac{1}{\tau} \le \frac{\kappa}{2} - 2$$
, where $\gamma = \gamma(\alpha_1, \alpha_2, ..., \alpha_{\kappa})$.
(For $\gamma = +\infty$ we put $\frac{1}{2\tau} = 0$, $\frac{2\tau + 1}{\tau + 1} = 2$.)

The aim of this paper is to investigate other sums by similar methods. The results about the function G(x) (defined below) generalize the results of papers [2] and [3]. The results about the function H(x) (also defined below) play the essential role in obtaining O-estimates of the "lattice remainder term" in the theory of lattice points in high-dimensional spheres with an arbitrary center, i.e., the function

$$P(x) = \sum 1 - \frac{\pi^{\frac{n}{2}} x^{\frac{n}{2}}}{\Gamma(\frac{n}{2} + 1)} ,$$

where the summation runs over all κ -triples $u = (u_1, u_2, ..., u_n)$ of integers such that

$$(u_1 + b_1)^2 + (u_2 + b_2)^2 + \dots + (u_n + b_n)^2 \leq \times .$$

Here, $k_1, k_2, ..., k_k$ are given real numbers and x > 0. We announce here the basic result (for the proof see [61):

$$\lim_{x \to +\infty} \sup \frac{\lg |P(x)|}{\lg x} = \frac{n}{2} - 1 - \frac{1}{2\tau} ,$$

where $\gamma = \gamma (b_1, b_2, ..., b_n)$, provided $n \ge 4 + \frac{2}{7}$ (for $\gamma = +\infty$ we put $\frac{1}{3} = \frac{1}{27} = 0$).

In the sequel, we let the letter c denote (generally different) constants depending only on a_{s} , ρ , β

and γ . We write A << B instead of $|A| \le cB$; if, in addition, B << A, we write $A \times B$. h, k, ℓ and m mean non-negative integers, h > 0, k > 0. Let us define the symbol $B^{\{z\}}$, for positive B and real z as follows:

$$\frac{B^{\tau}}{\tau} \quad \text{for } \tau > 0 ,$$

$$B^{\{\tau\}} = lq B \quad \text{for } \tau = 0 ,$$

$$1 \quad \text{for } \tau < 0 .$$

The starting point of our consideration is the following simple lemma which we mentioned above.

Lemma 1. Let \mathcal{L} and M be integers, M > 0 and let γ be a positive real number. Let the inequality

$$P_{a} >> k^{-\gamma}$$

hold for all & . Then there are at most

numbers & such that M & & & 2M and

(2)
$$2^{-\ell-1} \leq P_{k_k} < 2^{-\ell}$$
.

<u>Proof.</u> Let $M \leq k_1 < k_2 < \dots < k_n \leq 2M$ be positive integers fulfilling the inequality (1). Denote by K the smallest k such that $P_k < 2 \cdot 2^{-k}$. From the obvious inequality $\langle \xi_1 \pm \xi_2 \rangle \leq \langle \xi_1 \rangle + \langle \xi_2 \rangle$, for ξ_1 and ξ_2 real, we obtain

 $k_1 \ge K$, $k_2 - k_1 \ge K$, ..., $k_3 - k_{3-1} \ge K$ and then $k_3 \ge 3K$. Hence by assumption (1) we have

$$2\cdot 2^{-\ell} > P_{A_{\ell}} >> \chi^{-\theta^*} \geq (\frac{\vartheta}{\lambda_{\ell,k}})^{\vartheta^*} \geq (\frac{\vartheta}{2M})^{\vartheta^*} \ ,$$

and we conclude that

From this lemma we obtain immediately:

Lemma 2. Let ℓ , M, γ be as in Lemma 1. Then there is a constant $c_1 = c$ such that

$$P_{M_{k}} \ge 2^{-l} , \ m = M , M+1, \dots, 2M ,$$
 provided $2^{l} \ge c_{1} M^{2}$.

§ 2. The sum G(x)

Let $P_{k}>0$ for all k, i.e., at least one of the numbers $\alpha_1,\alpha_2,\ldots,\alpha_k$ is irrational. Let φ , β and x be real numbers, x>c. We consider the sum

(3)
$$G(x) = \sum_{k \in A} k ^{p} P_{k}^{-\beta}.$$

Obviously

$$G(x) \geq \sum_{n \in x} n^{\varphi}$$
,

provided $\beta \geq 0$. From Lemma 1 we see immediately that there are constants $c_1 = c$ and $c_2 = c$ such that the inequality $P_{2c} \geq c_1$ is fulfilled for at least $c_2 \times$ values of $2c \times c_2 \times c_1$. Thus, the relation

holds for any &, i.e.

$$G(x) >> x^{(p+1)}.$$

Let $\beta \ge 0$ and let us suppose that the inequality

$$P_{\mathbf{g}_{\mathbf{c}}} << \mathbf{g}_{\mathbf{c}}^{-\gamma^{*}}$$

is fulfilled for infinitely many \Re , say $\Re = \Re_m$, $m = 1, 2, \ldots$, where $\gamma > 0$. Then $G(\Re_m) >> \Re_m^{Q+G\tau}$, $m = 1, 2, \ldots$. In other words

(6)
$$G(x) = \Omega(x^{p+\beta r}).$$

Now, we pass to the 0-estimates. For m = 0, 1, ... let

$$T_m = \sum_{\alpha} A e^{\varphi} P_{A e}^{-\beta}$$
,

where the sum extends over all & in the range $2^m \le$ % $< 2^{m+1}$. Thus

$$G(x) < < \sum_{2^m \leq x} T_m$$
.

Let the inequality (1) hold for all & , where $\gamma > 0$. We successively obtain

$$T_m << \sum 2^{-\frac{\ell}{\delta}} 2^m 2^{m\rho} 2^{\ell\beta} = 2^{m(\rho+1)} \sum 2^{\ell(\beta-\frac{1}{\delta})}$$
,

where, by Lemma 2, it is sufficient to sum only over these ℓ , with $2^{\ell} << 2^{7n}$. Hence

(7)
$$T_m << 2^{m(\phi+1)} 2^{(m(\beta \sigma-1))}.$$

Summing over all m with $2^m \leq x$, we obtain immediately

(8)
$$G(x) << x^{f} l g^{x} x,$$

where $f = max(max(\beta\gamma, 1) + \rho, 0)$ and where

$$2e = 1$$
 for $max(\beta \gamma, 1) = -\varphi + min(\beta \gamma, 1)$

and $\varphi > -1 = -\beta \gamma$,

$$x = 2$$
 for $\beta y = 1 = -\varphi$,

me = 0 otherwise.

These results together with (4) and (6) give full information (up to a certain "logarithmic" gap) about the asymptotic behavior of the function G(x):

Theorem 1. The relation

$$G(x) >> x^{4p+13}$$

always holds. If $\gamma > 0$ and the inequality (1) holds for all k, then

for $\beta \gamma > 1$,

$$G(x) << x^{(p+1)} x^{(p+p)}$$

for $\beta \gamma \leq 1$. If $\beta \gamma = 1 < -\varphi$, then moreover G(x) << 1.

If $\gamma > 0$ and the inequality (5) holds for infinitely many & , then

$$G(x) = \Omega(x^{TB+p})$$

for B7 > 1.

Thus, if $\gamma = \gamma(\alpha_1, \alpha_2, \dots, \alpha_K)$, then

$$\lim_{x \to +\infty} \sup_{x \to +\infty} \frac{\lg G(x)}{\lg x} = \max(\max(\beta x, 1) + \rho, 0)$$

(for $\gamma = +\infty$ the right hand side is defined by its limit).

Let us note that (8) enables us to prove the convergence of the series

for $\max(\beta\gamma,1)+\varphi<0$. Relations (4) and (6) give its divergence in the cases $\max(\beta\gamma,-\varphi)\leq 1$ and $\beta\gamma>\max(1,-\varphi)$. If $1<\beta\gamma=-\varphi$, the series can either converge or diverge depending on the specific value $\alpha_1,\alpha_2,\dots,\alpha_k$. (For example in the case k=1 we can easily construct examples by means of continued fractions.) Here $\gamma=\gamma(\alpha_1,\alpha_2,\dots,\alpha_k)$ and for $\gamma=+\infty$ we interpret all inequalities by limiting processes for $\gamma\to+\infty$. Finally, let us note that the "lower exact order" of the function $\gamma=+\infty$, i.e.,

$$\lim_{x \to +\infty} \inf \frac{\lg F(x)}{\lg x}$$

is generally unknown (up to certain trivial cases). A similar remark applies for G(x). These questions seem to be more difficult.

§ 3. The sum H(x)

Let φ , β , x and A be real numbers, x > c,

A > c, $\beta \ge 0$. We consider the sum

$$H(x) = \sum_{n \in x} n^{n} \min^{n} (A, \frac{1}{P_{n}}),$$

where we put $min(A, \frac{1}{B}) = A$ for B = 0. Obviously

$$\sum_{h \leq x} h^{p} << H(x) << A^{n} \sum_{h \leq x} h^{p} ,$$

and hence

(9)
$$x^{\{p+1\}} << H(x) << A^{\beta} x^{\{p+1\}}$$
.

Let the numbers $\alpha_1, \alpha_2, \ldots, \alpha_K$ be rational and let N denote their least common denominator. Then

(10)
$$H(x) = \frac{x^{(p+1)}}{N} \sum_{j=0}^{N-1} \min^{A}(A, \frac{1}{P_{j}}) + c(p) + O(x^{p})$$

for $\rho \ge -1$, where $c(\rho) = 0$ for $\rho \ge 0$ and $c(\rho)$ is a constant depending only on A, ∞_j and ρ , $c(\rho) << 1$ for $-1 \le \rho < 0$ and

(11)
$$H(x) = \sum_{j=0}^{N-1} \min^{a} (A, \frac{1}{P_{j}}) \sum_{\substack{n \equiv j \pmod{N}}} n^{p} + O(x^{p+1})$$

for $\phi < -1$. The proofs are obvious.

Let the inequality (5) hold for infinitely many k, say $k = h_m$, m = 1, 2, ... and let $\gamma > 0$. Then $H(h_m) \ge h_m^p \min^{B}(A, h_m^n)$,

hence

(12)
$$H(x) = \Omega(x^{\varphi} \min^{\beta}(A, x^{\tau})).$$

In the sequel assume that the inequality (1) holds

ror all $k, \gamma > 0$. We put, as in § 2,

$$T_m = \sum_{i} h^{\phi} \min_{i} (A, \frac{1}{P_{in}})$$
,

where the sum extends over all h in the range $2^m \le n \le 2^{m+1}$. Thus

$$H(x) << \sum_{2^m \leq x} T_m$$

and by Lemmas 1 and 2 we obtain

$$T_m \ll 2^{m(p+1)} \sum_{2^{\ell} \ll 2^{mn}} 2^{-\frac{\ell}{2}} min^{\beta} (A, 2^{\ell})$$
.

Now we consider two special cases, according to whether $2^{2^m} << A$ or $2^{2^m} >> A$. In the first case

$$T_m < < 2^{m(p+1)} \sum_{2^{\ell} < < 2^{m}} 2^{\ell(\beta - \frac{1}{2^{\ell}})}$$
,

and hence

(13)
$$T_m << 2^{m(g+1)} 2^{4n(\beta r-1)}$$

In the second case

$$T_{m} << 2^{m \cdot (p+1)} (\sum_{2^{L} << A} 2^{L \cdot (B^{-\frac{1}{2}})} + A^{B} \sum_{2^{L} >> A} 2^{-\frac{L}{2}}) ,$$

and hence

(14)
$$T_m << 2^{m(\phi+1)} A^{(\beta-\frac{1}{2})}.$$

From (13) and (14) we obtain

(15)
$$H(x) < \sum_{2^m \in x} 2^{m(p+1)} \min^{(n-\frac{1}{2})} (A, 2^{2^m})$$
.

From (9) - (12) and (15) we obtain:

Theorem 2. The relations

$$x^{49+13} << H(x) << A^3 x^{49+13}$$

always hold. If the numbers $\alpha_1, \alpha_2, ..., \alpha_K$ are rational and N is their least common denominator, then we have the relations (10) and (11). If $\gamma > 0$ and the inequality (1) holds for all k, then

$$H(x) < \min_{\{0,7+p\}} (x, A^{\frac{1}{p}}) \max_{\{p+1\}} (2, xA^{-\frac{1}{p}})$$

for $\beta \gamma > 1$,

$$H(x) << x^{4p+13} min^{4/3y-13}(x, A^{\frac{1}{2}})$$

for $\beta \gamma \leq 1$. If $\beta \gamma = 1 < -\varphi$ then moreover $\mathbb{H}(x) << 1$. Finally, if the inequality (5) holds for infinitely many k, then

$$H(x) = \Omega(x^{\varphi} min^{\beta}(A, x^{\varphi}))$$
.

The "exact order" of the function H(x) generally depends on the relation between x and A. If $\beta \gamma \leq 1$ we have however

$$\lim_{x \to +\infty} \sup_{x \to +\infty} \frac{\lg H(x)}{\lg x} = \max(\varphi + 1, 0)$$

and the same relation holds in the case lq A = o(lq x). The relation (12) can easily be improved if A = A(x) is an increasing continuous function, the inequality (5) with $\gamma > 0$ holds for infinitely many k, say $k = h_m$, m = 1, 2, ..., and $A(x) \leq x^{\gamma}$. Then for $x_m = A^{-1}(h_m^{\gamma})$

we get

$$\mathbb{H}(\mathbf{x}_m) \ge \mathbf{h}_m^{\varphi} \min^{\beta}(\mathbf{A}(\mathbf{x}_m), \mathbf{h}_m^{\varphi}) = \mathbf{h}_m^{\varphi + \beta \varphi}$$

and hence $H(x) = \Omega(A^{\beta+\frac{p}{2}}(x))$. In this case, for $\beta\gamma > -\rho \ge 1$, our theorem yields

$$H(x) = O(A^{\beta + \frac{Q}{\beta}}(x)),$$

provided that the inequality (1) holds for all & , etc.

In the important case, when ${f A}$ is independent on ${f x}$, we have the following corollary.

Corollary. Let $\varphi + 1 < 0$ and let, for a certain $\gamma > 0$, the inequality (1) hold for all k. Then

$$H_A = \sum_{h=1}^{\infty} h^p min^B (A, \frac{1}{P_h}) \times 1$$

for B7 + 9 < 0 ,

for $\beta \gamma + \rho = 0$ and

$$A << H_A << A^{\beta + \frac{p}{2}}$$

for $\beta \gamma + \rho > 0$. If the inequality (5) holds for infinitely many & (say $k = h_m$), $\gamma > 0$, then there is a sequence of the numbers $A = A_m$ (namely $A_n = h_m^{\gamma}$) such that

$$\mathbb{H}_{A_m} >> A_m^{\beta + \frac{9}{7}} .$$

Let $\varphi = -1$ and let, for a certain $\gamma > 0$, the inequality (1) hold for all R. Then

for By £ 1 and

$l_{x} < < H(x) < < A^{(\beta - \frac{1}{2})} l_{x} \frac{x}{A^{\frac{1}{4}}}$

for $\beta \gamma > 1$, provided $x^{\gamma} >> A$.

References

- [1] B. DIVIŠ: Über Gitterpunkte in mehrdimensionalen Ellipsoiden, Czech.Math.Journal 20(95)(1970), 130-139.
- [2] G.H. HARDY, T.E.LITTLEWOOD: Some problems of Diaphantine approximation: The lattice-points of a right-angle triangle (second memoir), Abhandlungen aus dem Math.Seminar der Hamb. Univ., Bd.1(1922), 212-249.
- [3] A.H. KRUSE: Estimates of $\frac{N}{2k-1}$ & $-k < k \times >^{-t}$,

 Acta Arith.12(1967),229-263.
- [4] B. NOVÁK: On certain sum in number theory, Comment.
 Math.Univ.Carolinae 12(1971),669-685.
- [5] B. NOVÁK: On a certain sum in number theory II, Trans. Amer. Math. Soc. to appear.
- [6] B. NOVÁK: On lattice points in high-dimensional ellipsoids: problem of centers, Journal of Number Theory to appear.

University of Illinois Urbana $U_{\bullet}S_{\bullet}A_{\bullet}$

Matematicko-fyzikální fakulta, Karlova universita, Sokolovská 83, Praha 8, Czechoslovakia

(Oblatum 7.11.1972)