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ON THE ALGEBRAIC CHARACTERIZATION OF SYSTEMS OF 1-1
PARTIAL MAPPINGS
Tomds TICHY, Ji¥i VINAREK, Praha

1, Let X=4{Xy; xe A} be a system of sets and
F=4{fy;a €Al a system of certain subsets £ c X, x
xXp (x, 3 e A ) . Ve can consider these subsets as
multivalued partial mappings among sets of X which form
the following operations on % : a partial binary opera-
tion (the composition of relations o ¢ £,9.——> £ °og =
=f(x,2);(x,4) & g,(y,x) € £3 ) and an unary one (the -
inverse relation =7 : £—£~7 = {(x,4); (4, x) e £7).
# with these operations forms an algebra called an al-
gebraization of the system of set‘s and relations.

On the other hénd: We have an algebra § with a

1 and

partiel binary operation e and a unary operation ~
we try to find a system of pets and partial mappings who-
se algebraization is the algebra @ . We call such sys-

tem of sets and mappings a representation of the algebra

G .

It is well known that an algebraization of a system

- e o e 2 e e e o - -
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of mappings of a single set closed under the composition

of mappings (the composition of mappings, the identity map-
ping and the inverse mapping, resp.) is a semigroup (group,
resp.). Representations are given by the well-known Cayley s
theorem. The problem of algebraizations and representations
of categories has been solved by P, Freyd (see [3]). Simi-
lar representetions of certain algebras are given in [4],
too,

An algebraization of a system of all 1-1 partial map-
pings of a single set (including the empty mapping) is cal-
led an invélse semigroup; its representation was given in
[1]1,(2]. In this paper, we solve a more general question of
the algebraization of systems of 1-1 partial non-empty map-
pings closed under the inverse partial mappings and under
the non-empty composition of partial mappings. (The exclu-
sion of empty mappings is not substantial., We use it in or-
der to simplify representations.) We give in this paper re-
presentations of algebras of 1-1 partial mon-empty mappings
among a set of sets, a class of sets, resp. (Theorem 1,2
resp.). In the second case we use the axiom of choice. In
each of theée cases we give a different representation.‘The
correspondence between them is formulated in Theorem 3 - in

fact, it is the matter of factorization.

2, Denote in this paper by G =(G,+, =) an algebra
on a class G , consisting of a partial binary operation -
and a total unary operation -1 « Furthermore, if X =

={Xcj;xeA} is a system of sets, F will always denote
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a gystem of some non-empty 1l-1 partial mappings emong sets
from X which is closed under the inverse paftial mappings
and under the composition of partial mappings.

Theorem 1, Let G, A be sets; let - (-1 resp.) be a
partial binary (total unary, resp.) operation on G . Then
G is an algebraization of the system (X,F) if and
only if the following conditions for any a,&,c € G hold:
(1) (akr)e is defined if and only if @ (&e) is defined;
then (at)ec = altec)
2) (@) = a ;
(3) atr is defined if and only if & To~" is defi-
ned and then (at)~!= &~1a"" 5

(4) aa-'a is defined and aa’a = a

(5) (aa)(ot~1) = (bt~")(aa™?) vhenever one of
these two expressions is defined.

Remark. It is easy to see that in the case of a total
binary operation we obtain precisely the inverse semigroup
axioms,

Proof of Theorem 1. Obviously, the algebraization of
any system (X, F) satisfies conditions (1) - (5). On the
other hand, from (1) - (5) for an algebra G , further con-
ditions follow:

() I£ af is defined, then a'alr, a 84! are also de-

fined. ((a.b')"'a.!r, al (atr)=1 are defined (see (4)), hen-
ce from (3) and (1) &~ akr), (alrl~")a~!  are defined.)
(B) If we denote Jm{aa™; a€ 63 , then for any g4, 4a,

#3 €, equations gy, = 32, d2ds = da 1OPLY

- 713 -



4133 = 33 . (We have Gy = 4444 = (3152)39= 34 Guds)=dyds-)
Denote R the following binary relation on G : for
a,€G there is (a,&)e R if and only if ab-! ig
defined in G , Denote & the equivalence generated by
R . Now we can define the system (X,F) . Putting X =
=4{Xx;x €A} ,vhere X, are just different classes of
the equivalence @ , we shall take for F &u system of
mappings £, of sets I“ indexed by elements of G , whe-
re £, are defined as follows:
for x e G, fo(x) is defined if and only if xa

-1

is defined and xaa~" = X . Then we put fo (x) = xa .

Clearly, £fo (aa~?) is elways defined. loreover, fo (x)=
=f,(y) implies Xa = ga and xaa ™ '= x, gaa "=y,
hence X = 4 . If £4(x), £,(g) are defined, we have
Xy and £,,(x) A £4(g) . Vie can see that £, are sui-
table non-empty one-to-cne partial mappings snd it remains
to prove that (X, F) is a representation of § .

(a) For any @,4- € G ve have £ o fo = fap .

Whenever fgp (x) and (£50 £4) (x) are defined, we
find £p (fo (X)) = (%)l = x(adr) = £ (x) . If
£a4 (%) 1is defined, we get X (afr)(alr) s x ,Thus xa
is defined and from (B),(5), (af&)(at)"aa " m atr (atr)-" ,
xx(al)(al) x=1x we can deduce x*'xaa~! =

= x'x . Thus xaa ' = x , i.e. £5(x) is defined.
Furthermore, (xa )&  is always defined and xalr- 8 %"=
= % implies that xalrlr™! = xa , l.e. (fp0£,)(x) is de-
fined, too.

If (fp 0£o) (x)  1is defined, we have xaa™ m x ,
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xalbl~'= xa . Thus x@lb)(at) Tz xaa" = x and

forr (x) is also defined.

(i) Tor every a € G , £4 and fq._4 are mutually inver-
-1

of, =foq-11 fa1q (X)=xa"a = X,

se, We have fao f&_.‘ = £0«’4¢-’£¢‘4

£o44 (q.)-y.a,a,'" = o , vhencver f£,.4 (x), fo (4 ) are defi-
ned.

{c) For @, €G, a s & implics fo £ .
-1)

If fo = f5 , then fq (aa™) = £y (aa and

£, (B~1) = £, (bh~") , fence a@’= e t™"= b1 @ 1™
cnd @ = a,a:",b' = lr"’,er =& .

Thecrem 2. Let 6 be z class, let X be a system of
gets. Then an algebra @ 1is the algebraization of 2 system
(X,F) if end only if §  satisfies:

(1) - (5) from Theorem 1;

(6) if we put G = fx e Gyxx"= xTx # and define

a & & if and only if there exist a@p, .09y € (4 ’

@y = @, @y= L such that aj @j,q 1s defined for 4=
=0, 0,m=4 ,then {x € G sy xatis a set for every
a € a/ .

It is evident that the algebraization of any system F
satisfies conditions (1) - (6), The sufficiency will result
from the focllowing three lemmas,

Lema 1. M(a)=4ixe G xx-1= aa~? ond xx =
=a'atl is c set for every a € G .

-1

Froof. g (x) = a™"x defines a mapping g. from

M (a) into & . Obviously, a~fx  is always defined

end g(x) g ()1 "= a™xx""a = alaa e = axx"Tx =
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= x"Taax =Cg,(x)]'4 ¢ (x) . Moreover, g is injective

(if g (x) = g(n),then aa™'x = aa'y ; hence xx"x =
=a,4‘,'44,, and X = g ) and ¢ (x) = g.(y) for any x’,fg.e
€ M(a) .Condition (6) finishes the proof.

Lemma 2, Denote d(a) = a'a.«"’, n)=a'a for eve-

ry @ € G ., Then there is a mapping X: G — G with the
following properties:
(I) dlX(aV] = n(a),2n[K(a))=d(a) for everya e G ;

(ID [X()1™ = X(a"*)  for every a 66 ,

(III) if n(a) = d(&),then K(&)K(a) is defined and
XGal) = X(&):-X(a),

(Iv) if k()= (&) eand d(a)=d(&) , then X(a) =

= X&) .

Proof. We denote J =4aq™’!

(a,fr)eS if and only if K(a) = d(&) and denote ~

s aeG% ., We can define

the equivalence generated by the binary relation § , Now,
we can consider only classes of this equivalence., Let C be
such a class and let @ €« C ,In viewof aa™' € I~ C ,
the class J A C 1is non-empty and we can define xch N

A C using the axiom of choice. M(x)=faeGyd(a)ex,,n(a)=x}
is a non-empty set for every x € J A C according to the
definition of ~» and Lemma 1; 80 we can select X ¢ M (x) .
Now, we put X(a) = (R{a)]~"d(a) for every a e G . If

aeC ,then d(x@)) = x(a), nxl@aN! =d@ @) =

- Xc ’ nida)) = d.(ﬂ-), (X)) = d{a) ’ d(X(a)) =
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= (@) "d )@@ "kla) = (@) 1dxi@) ila)=nra).

Thus the definition of X 1is correct and (I) is proved.
From d(a)=nla~1), n(a)=d @"1) it follows (II),
If nCa)=d(&), then nlaklk)=r(&),d(al)=d(t)and

Xatr) = (R B)'d(a) = (kN1 AAIA RN dla) = X (&)X () ,

i,e, (III) holds., Obviously, (IV) holds, too.

Lemma 3. Let X ©be a mapping from Lemma 2, Then for

every a &« @ XGaa1!) =aa"! .

Proof. K(aa ") =K(a"WK(a)=r[X(a)l=d(a)=aa™".

Now, we can prove Theorem 2, The relation = from (6)
is clearly an equivalence, We can define the system (X, F)
in this way: X is a system of all the classes of the e-
quivalence & (which are sets according to (6)). F ié
a system of all the mappings i‘; (a &G ) defined

£,(x) = X(xa) xa whenever xaa~! = x .

1f fo (x), o (y)  are defined, then x ™ g ( @ap=x,
Qg = aa, a; = N, Al i are defined for

4 m 0,1 ); we have also £, (x) &~ F,(y) (a), =

- f,(x),a)= a,"'a.,va.'z- . (4) ). Obviously %, (aa™")
is always defined. If £, (x) m £, (4) , then
K(xadxaa'sK(ya)yaa” ,i.e X(xa)x = K(galy .
From Lemma 3 it follows that d(a&'x %) = d(a¢™"y)
and 2 (@ 'x"T%) = nCay"y) . This fact implies
nlxa)=n(ya), nix)mnlylsdpyed(x)and dixa) = dlga).
Then X (xa ) = K(ga), K@% DK(xa)x =K@y K (yaly,
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Xixaax"x =K(yaa'y")y and x w4 . Thus T, are
suitable non-empty one-to-one partial mappings.
Now we prove that £g o £o = £, for any a,beG.

If (£, 0 £,)(x) 1is defined, then X(a™'x~")K(xa)xa =
=K@ 1 X (xa) xa and from Lemmss2 and 3 it follows
that xa 28 "' = xaa~1 = x , ieee Fop (x) is de-

fined, If fop (x) is defined, then x = xatrd'a ' =

= x (M) (@aaNabtr e s xlaa™) x5 ) a b= x(ad (X x)=

= xaa™" I Y 2’,, (x) is defined. Furthermore,

X(xa)xa =X (xa)xa (Ll a2 )e K (xa)xa (R )ot") -
mK(xa)xa brbr=! , hence (Fy 0 T, )(x) 1is defined, too.

Finally, (% ¢ £,)(x) = X[X(xa)xablX(xa)xal =
= K@x'xa )X (xa)xal = X(xal)xak = §,4 (x) .

Obviously £,,-4 (x) is defined if and only if £, (x)

is defined; we have ?“.4(a)-1(u¢ar')aa.a"‘- Kx)x = x .

A similar consideration shows that f;'.q‘_ () = 4 , if
?‘.4 (y) is defined, Thus £, and o are mutual-
1y inverse.

Finally we have to prove that a « £ implies z“_ - Tb .
Suppose £, = £ . In the same way as in the proof of
Theorem 1 we can prove that aa-? = &o-7! , which imp-
lies X (aaa)aa'a « X&' 0) b~"4r , i.e. K(ada =
=X(&)& and a'a = &4, Thus X(a) = K(&) and

K@) Xada = XK & ie. a= & .

Theorep 3. Let < &, ., =1 % be an algebra from Theo-
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rem 1, i.e, let @ be a set. Let U, E resp. be sys-
tems of sets and some of their partial mappings which are
the represenations of the algebra @ in the sense of Theo-
rem 1, 2 resp., Then ZE is a factorization of U .

Proof. Let us put @ ={a e G;a.a,"'- a'a} . For cer-
tain sets ﬁ,i we have u-({Oﬂ_)pcﬁ?,{fg;a—cG}>,

2=<507;9¢Z3,4%,,a683> . (The definition of sets T,g
and of mappings £, , g;’ follows clearly from Theorems 1
and 2,)

Ve define M1 G—> G a8 M(x) = K(x) & and
we shall show that M  is the required factorization.
() () (x N2 K () xx K (01 m KGOK (DK (e 577% =

=K (xo) o = (00O 1 () e M) @ @ . Putting V=
=Xy )y for @.5 , we get L(@):K(@)@.K(«_)xwﬂ)ﬂ,@,
(b) For every p a1  there exists @ €« Z  such that

h(0p) e 0 . It is sufficient to prove that (x,¢-)e R
implies M (X) = S (y) . If we denote apy = hix), e, =

= '4]((.1‘:4) y @g = M (4y) , wecan easily see that
aiai,, is defined for 4 = 0,4 , i.ec h(x) = f(g) .
(¢) For every q & z there exists n e U  such that
H"(O&)c 01,. We have to prove that for any x,s e 3 aw:"
is defined, whenever x4 is defined. Ve have .xfy--xn‘.q.“n‘.-

- aw."'q,q, and xn‘,"‘ is defined, too.

(d) Finally, if £4(x) is defined, then £ (h(x))
=h(£4,(x)) ., We have h(xX)aa'mX(x)xaa = K(x)x = h (x)
and Z’,, (h(x)) 1is defined, Moreover, we get ?a‘(h(a )) -
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= K(K(xIxa ) K (x)5a = X(xTxa)K (% )xa =X (xa)xa = 5. (xa) = h (£, (x))

and Theorem 3 is proved.

[11

[21
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