

Werk

Label: Article **Jahr:** 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0013|log65

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae
13,4 (1972)

ON THE ALGEBRAIC CHARACTERIZATION OF SYSTEMS OF 1-1
PARTIAL MAPPINGS

Tomáš TICHÝ, Jiří VINÁREK, Praha

1. Let $X = \{X_{\alpha}; \alpha \in A\}$ be a system of sets and $Y = \{f_{\alpha}; \alpha \in A\}$ a system of certain subsets $f \in X_{\alpha} \times X_{\beta}$ (α , $\beta \in A$). We can consider these subsets as multivalued partial mappings among sets of X which form the following operations on Y: a partial binary operation (the composition of relations $e: f, g \to f \circ g = \{(x,x); (x,y) \in g, (y,x) \in f\}$) and an unary one (the inverse relation $f \in \{x,y\}$) and an unary one (the inverse relation $f \in \{x,y\}$). We with these operations forms an algebra called an algebraization of the system of sets and relations.

On the other hand: We have an algebra \underline{G} with a partial binary operation • and a unary operation $^{-1}$ and we try to find a system of sets and partial mappings whose algebraization is the algebra \underline{G} . We call such system of sets and mappings a representation of the algebra \underline{G} .

It is well known that an algebraization of a system

AMS, Primary: 20M30

Ref. Ž. 2.721

of mappings of a single set closed under the composition of mappings (the composition of mappings, the identity mapping and the inverse mapping, resp.) is a semigroup (group, resp.). Representations are given by the well-known Cayley's theorem. The problem of algebraizations and representations of categories has been solved by P. Freyd (see [3]). Similar representations of certain algebras are given in [4], too.

An algebraization of a system of all 1-1 partial mappings of a single set (including the empty mapping) is called an inverse semigroup; its representation was given in [1],[2]. In this paper, we solve a more general question of the algebraization of systems of 1-1 partial non-empty mappings closed under the inverse partial mappings and under the non-empty composition of partial mappings. (The exclusion of empty mappings is not substantial. We use it in order to simplify representations.) We give in this paper representations of algebras of 1-1 partial mon-empty mappings among a set of sets, a class of sets, resp. (Theorem 1.2 resp.). In the second case we use the axiom of choice. In each of these cases we give a different representation. The correspondence between them is formulated in Theorem 3 - in fact, it is the matter of factorization.

2. Denote in this paper by $\underline{G} = (G, \cdot, -1)$ an algebra on a class G, consisting of a partial binary operation \cdot and a total unary operation -1. Furthermore, if $X = \{X_{\infty}; \infty \in A\}$ is a system of sets, F will always denote

a system of some non-empty 1-1 partial mappings among sets from X which is closed under the inverse partial mappings and under the composition of partial mappings.

Theorem 1. Let G, A be sets; let \cdot ($^{-1}$ resp.) be a partial binary (total unary, resp.) operation on G. Then G is an algebraization of the system (X,F) if and only if the following conditions for any a, b, $c \in G$ hold:

(1) (ab)c is defined if and only if a(bc) is defined; then (ab)c = a(bc);

- (2) $(a^{-1})^{-1} = a$;
- (3) ab is defined if and only if $b^{-1}a^{-1}$ is defined and then $(ab)^{-1} = b^{-1}a^{-1}$;
- (4) $aa^{-1}a$ is defined and $aa^{-1}a = a$;
- (5) $(aa^{-1})(bb^{-1}) = (bb^{-1})(aa^{-1})$ whenever one of these two expressions is defined.

Remark. It is easy to see that in the case of a total binary operation we obtain precisely the inverse semigroup axioms.

<u>Proof</u> of Theorem 1. Obviously, the algebraization of any system (X, F) satisfies conditions (1) - (5). On the other hand, from (1) - (5) for an algebra \underline{G} , further conditions follow:

(A) If ab is defined, then $a^{-1}ab$, abb^{-1} are also defined. $((ab)^{-1}ab$, $ab(ab)^{-1}$ are defined (see (4)), hence from (3) and (1) $b^{-1}(a^{-1}ab)$, $(abb^{-1})a^{-1}$ are defined.)

(B) If we denote $J = \{aa^{-1}; a \in G\}$, then for any j_1, j_2 , $j_3 \in J$, equations $j_1, j_2 = j_2, j_2 j_3 = j_3$ imply

$\dot{j}_1\dot{j}_3 = \dot{j}_3$. (We have $\dot{j}_3 = \dot{j}_2\dot{j}_3 = (\dot{j}_1\dot{j}_2)\dot{j}_3 = \dot{j}_1(\dot{j}_2\dot{j}_3) = \dot{j}_1\dot{j}_3$.)

Denote R the following binary relation on G: for $a,b \in G$ there is $(a,b) \in R$ if and only if ab^{-1} is defined in G. Denote \approx the equivalence generated by R. Now we can define the system (X,F). Putting $X = iX_{\alpha}$; $\alpha \in A$; where X_{α} are just different classes of the equivalence \approx , we shall take for F a system of mappings f_{α} of sets X_{α} indexed by elements of G, where f_{α} are defined as follows:

for $x \in G$, $f_a(x)$ is defined if and only if xais defined and $xaa^{-1} = x$. Then we put $f_a(x) = xa$. Clearly, $f_a(aa^{-1})$ is elways defined. Moreover, $f_a(x)$ = = $f_a(y)$ implies xa = ya and $xaa^{-1} = x$, $yaa^{-1} = y$, hence x = y. If $f_a(x)$, $f_a(y)$ are defined, we have $x \approx y$ and $f_a(x) \approx f_a(y)$. We can see that f_a are suitable non-empty one-to-one partial mappings and it remains to prove that (X,F) is a representation of \underline{G} . (a) For any $a, b \in G$ we have $f_b \circ f_a = f_{ab}$. Whenever $f_{ab}(x)$ and $(f_b \circ f_a)(x)$ are defined, we find $f_k(f_a(x)) = (xa)k = x(ak) = f_{ak}(x)$. $f_{ab}(x)$ is defined, we get $x(ab)(ab)^{-1} = x$. Thus xais defined and from (B),(5), $(ab)(ab)^{-1}aa^{-1} = ab(ab)^{-1}$. $x^{-1}x(ab)(ab)^{-1} = x^{-1}x$ we can deduce $x^{-1}xaa^{-1} =$ = $x^{-1}x$. Thus $xaa^{-1} = x$, i.e. $f_a(x)$ is defined. Furthermore, (xa)b is always defined and $xab \cdot b^{-1}a^{-1} =$ = x implies that $xabb^{-1} = xa$, i.e. $(f_b \circ f_a)(x)$ is defined, too.

If $(f_k \circ f_a)(x)$ is defined, we have $xaa^{-1} = x$.

 $xabb^{-1} = xa$. Thus $x(ab)(ab)^{-1} = xaa^{-1} = x$ and fab (x) is also defined.

- (b) For every $a \in G$, f_a and f_{a-1} are mutually inverse. We have $f_a \circ f_{a-1} = f_{a-1} \circ f_a = f_{$
- (c) For $a, b \in G$, a + b implies $f_a + f_b$.

 If $f_a = f_b$, then $f_a(aa^{-1}) = f_b(aa^{-1})$ and $f_a(bb^{-1}) = f_b(bb^{-1})$. Hence $aa^{-1} = aa^{-1}bb^{-1} = bb^{-1}aa^{-1} = bb^{-1}$ and $a = aa^{-1}b = bb^{-1}b = b$.

Theorem 2. Let G be a class, let X be a system of sets. Then an algebra G is the algebraization of a system (X,F) if and only if G satisfies:

- (1) (5) from Theorem 1;
- (6) if we put $\widetilde{G} = \{x \in G; xx^{-1} = x^{-1}x\}$ and define $a \approx b$ if and only if there exist $a_0, \dots, a_m \in \widetilde{G}$, $a_0 = a, a_m = b$ such that a_i, a_{i+1} is defined for $i = 0, \dots, m-1$, then $\{x \in \widetilde{G}; x \approx a\}$ is a set for every $a \in \widetilde{G}$.

It is evident that the algebraization of any system **F** satisfies conditions (1) - (6). The sufficiency will result from the following three lemmas.

Lemma 1. $M(a) = \{x \in G; xx^{-1} = aa^{-1} \text{ and } x^{-1}x = a^{-1}a\}$ is a set for every $a \in G$.

Froof. $q(x) = a^{-1}x$ defines a mapping q from m(a) into \widetilde{G} . Obviously, $a^{-1}x$ is always defined and $q(x)[q(x)]^{-1} = a^{-1}xx^{-1}a = a^{-1}aa^{-1}a = x^{-1}xx^{-1}x = a^{-1}aa^{-1}a = a^{-1}xx^{-1}x = a^{-1}aa^{-1}a = a^{-1}xx^{-1}x = a^{-1}aa^{-1}a = a^{-1}xx^{-1}x = a^{-1}aa^{-1}a = a^{-1}xx^{-1}x = a^{-1}aa^{-1}a = a^{-1}aa$

= $x^{-1}aa^{-1}x = [g(x)]^{-1}g(x)$. Moreover, g is injective (if g(x) = g(y), then $aa^{-1}x = aa^{-1}y$; hence $xx^{-1}x = yy^{-1}y$ and x = y) and $g(x) \approx g(y)$ for any $x, y \in M(a)$. Condition (6) finishes the proof.

Lemma 2. Denote $d(a) = aa^{-1}$, $n(a) = a^{-1}a$ for every $a \in G$. Then there is a mapping $K: G \longrightarrow G$ with the following properties:

- (I) $d[X(a)] = \kappa(a), \kappa[X(a)] = d(a)$ for every $a \in G$;
- (II) $[K(a)]^{-1} = K(a^{-1})$ for every $a \in G$;
- (III) if $\kappa(a) = d(b)$, then K(b)K(a) is defined and $K(ab) = K(b) \cdot K(a)$;
- (IV) if $\kappa(a) = \kappa(b)$ and d(a) = d(b), then K(a) = K(b).

<u>Proof.</u> We denote $J = \{aa^{-1}, a \in G\}$. We can define $(a,b) \in S$ if and only if $\kappa(a) = d(b)$ and denote \sim the equivalence generated by the binary relation S. Now, we can consider only classes of this equivalence. Let C be such a class and let $a \in C$. In view of $aa^{-1} \in J \cap C$, the class $J \cap C$ is non-empty and we can define $\kappa_C \in J \cap C$ using the axiom of choice. $M(\kappa) = \{a \in G, d(a) = \kappa_C, \kappa(a) = \kappa\}$ is a non-empty set for every $\kappa \in J \cap C$ according to the definition of \sim and Lemma 1; so we can select $\overline{\kappa} \in M(\kappa)$. Now, we put $K(\alpha) = [\overline{\kappa(\alpha)}]^{-1} = \overline{\kappa(\alpha)}$, $\kappa(\overline{\kappa(\alpha)})^{-1} = d(\overline{d(\alpha)}) = K(\alpha)$, $\kappa(\overline{\kappa(\alpha)})^{-1} = d(\overline{d(\alpha)}) = K(\alpha)$, $\kappa(\overline{\kappa(\alpha)})^{-1} = d(\overline{d(\alpha)}) = K(\alpha)$, $\kappa(\overline{\kappa(\alpha)}) = d(\alpha)$.

 $= (\overline{\kappa(a)})^{-1} \overline{d(a)} (\overline{d(a)})^{-1} \overline{\kappa(a)} = (\overline{\kappa(a)})^{-1} d(\overline{\kappa(a)}) \overline{\kappa(a)} = \kappa(a).$ Thus the definition of K is correct and (I) is proved.

From $d(a) = \kappa(a^{-1})$, $\kappa(a) = d(a^{-1})$ it follows (II).

If $\kappa(a) = d(b)$, then $\kappa(ab) = \kappa(b)$, d(ab) = d(b) and $K(ab) = (\overline{\kappa(b)})^{-1} \overline{d(a)} = (\overline{\kappa(b)})^{-1} \overline{d(b)} (\overline{d(b)})^{-1} \overline{d(a)} = X(b) K(a)$,

Lemma 3. Let K be a mapping from Lemma 2. Then for every $a \in K(aa^{-1}) = aa^{-1}$.

i.e. (III) holds. Obviously, (IV) holds, too.

Proof. $K(aa^{-1}) = K(a^{-1})K(a) = \pi [K(a)] = d(a) = aa^{-1}$. Now, we can prove Theorem 2. The relation ≈ from (6) is clearly an equivalence. We can define the system (X,F) in this way: X is a system of all the classes of the equivalence \approx (which are sets according to (6)). **F** is a system of all the mappings \tilde{f}_a (a ϵ G) defined $f_a(x) = K(xa) xa$ whenever $xaa^{-1} = x$. If $\tilde{f}_a(x)$, $\tilde{f}_a(y)$ are defined, then $x \approx y$ ($a_0 = x$, $a_1 = aa^{-1}, a_2 = y, a_i a_{i+1}$ are defined for i = 0, 1); we have also $\tilde{f}_a(x) \approx \tilde{f}_a(y)$ ($a'_0 =$ = $\tilde{f}_a(x)$, $a'_1 = a^{-1}a$, $a'_2 = \tilde{f}_a(y)$). Obviously $\tilde{f}_a(aa^{-1})$ is always defined. If $f_a(x) = f_a(y)$, then $K(xa)xaa^{-1}=K(ya)yaa^{-1}$, i.e. K(xa)x=K(ya)y. From Lemma 3 it follows that $d(a^{-1}x^{-1}x) = d(a^{-1}y^{-1}y)$ and $n(a^{-1}x^{-1}x) = n(a^{-1}y^{-1}y)$. This fact implies n(xa)=n(ya), n(x)=n(y)=d(y)=d(x) and d(xa)=d(ya). Then $K(xa) = K(ya), K(a^{-1}x^{-1})K(xa)x = K(a^{-1}y^{-1})K(ya)y$,

 $K(xaa^{-1}x^{-1})x = K(yaa^{-1}y^{-1})y$ and x = y. Thus \mathcal{I}_a are suitable non-empty one-to-one partial mappings.

Now we prove that $\tilde{\mathbf{f}}_{b} \circ \tilde{\mathbf{f}}_{a} = \tilde{\mathbf{f}}_{ab}$ for any $a, b \in G$.

If $(\tilde{\mathbf{f}}_{b} \circ \tilde{\mathbf{f}}_{a})(\mathbf{x})$ is defined, then $K(a^{-1}\mathbf{x}^{-1})K(\mathbf{x}a)\mathbf{x}abb^{-1}\mathbf{x}^{-1}$ $= K(a^{-1}\mathbf{x}^{-1})K(\mathbf{x}a)\mathbf{x}a$ and from Lemmas 2 and 3 it follows that $\mathbf{x}abb^{-1}a^{-1} = \mathbf{x}aa^{-1} = \mathbf{x}$, i.e. $\tilde{\mathbf{f}}_{ab}(\mathbf{x})$ is defined. If $\tilde{\mathbf{f}}_{ab}(\mathbf{x})$ is defined, then $\mathbf{x} = \mathbf{x}abb^{-1}a^{-1} = \mathbf{x}(\mathbf{x}^{-1}\mathbf{x})(aa^{-1})abb^{-1}a^{-1} = \mathbf{x}(aa^{-1})(\mathbf{x}^{-1}\mathbf{x})abb^{-1}a^{-1} = \mathbf{x}(aa^{-1})(\mathbf{x}^{-1}\mathbf{x}) = \mathbf{x}(\mathbf{x}a^{-1})(aa^{-1}abb^{-1}a^{-1}a^{-1}abb^{-1}a^{-1}a^{-1}abb^{-1}abb^{-1}a^{-1}abb^{-1}a^{-1}abb^{-1}a^{-1}abb^{-1}a^{-1}abb^{-1}abb^{-1}a^{-1}abb^{-1}a^{-1}abb^{-1}a^{-1}abb^{-1}a^{-1}abb^{-1}abb^{-1}a^{-1}abb^{-1}a^{-1}abb^{-1}a^{-1}abb^{-1}a^{-1}abb^{-1}abb^{-1}a^{-1}abb^{-1}a^{-1}abb^{-1}a^{-1}abb^{-1}a^{-1}abb^{-1}abb^{-1}a^{-1}abb^{-1}a^{-1}abb^{-1}a^{-1}abb^{-1}a^{-1}abb^{-1}a$

Obviously $\tilde{f}_{aa^{-1}}(x)$ is defined if and only if $\tilde{f}_a(x)$ is defined; we have $\tilde{f}_{aa^{-1}}(x) = K(xaa^{-1})xaa^{-1} = K(x)x = x$. A similar consideration shows that $\tilde{f}_{a^{-1}a}(y) = y$, if $\tilde{f}_{a^{-1}}(y)$ is defined. Thus \tilde{f}_a and $\tilde{f}_{a^{-1}}$ are mutually inverse.

Finally we have to prove that a + b implies $\mathcal{I}_a + \mathcal{I}_b$. Suppose $\mathcal{I}_a = \mathcal{I}_b$. In the same way as in the proof of Theorem 1 we can prove that $aa^{-1} = bb^{-1}$, which implies $K(aa^{-1}a)aa^{-1}a = K(bb^{-1}b)bb^{-1}b$, i.e. K(a)a = K(b)b and $a^{-1}a = b^{-1}b$. Thus K(a) = K(b) and $K(a^{-1})K(a)a = K(b^{-1})K(b)b$, i.e. a = b.

Theorem 3. Let < G, ., -1 > be an algebra from Theo-

rem 1, i.e. let G be a set. Let U, E resp. be systems of sets and some of their partial mappings which are the representations of the algebra G in the sense of Theorem 1, 2 resp. Then E is a factorization of U.

<u>Proof.</u> Let us put $\tilde{G} = \{a \in G; aa^{-1} = a^{-1}a\}$. For certain sets \overline{U} , \overline{Z} we have $U = \langle \{0_p; p \in \overline{U}\}, \{f_a; a \in G\} \rangle$, $Z = \langle \{0_q'; q \in \overline{Z}\}, \{f_a; a \in G\} \rangle$. (The definition of sets $\overline{U}, \overline{Z}$ and of mappings f_a , f_a follows clearly from Theorems 1 and 2.)

We define $h: G \longrightarrow \widetilde{G}$ as $h(x) = K(x) \cdot x$ and we shall show that h is the required factorization.

(a) $h(x)(h(x))^{-1}=K(x)xx^{-1}[K(x)]^{-1}=K(x)K(xx^{-1})X(x^{-1})=x^{-1}x=$ $=x^{-1}K(xx^{-1})x=(h(x))^{-1}.h(x), i.e. h(x) \in \widetilde{G}$. Putting $\widetilde{\psi}=$ $=K(\psi^{-1})$ if for $\psi\in \widetilde{G}$, we get $h(\widetilde{\psi})=K(\widetilde{\psi})\widetilde{\psi}=K(\psi)K(\psi^{-1})\psi=\psi$.

(b) For every $\psi\in \overline{U}$ there exists $\chi\in \overline{Z}$ such that $h(0_p)\subset 0'_q$. It is sufficient to prove that $(x,\psi)\in R$ implies $h(x)\approx h(\psi)$. If we denote $a_0=h(x)$, $a_1=$ $=\psi^{-1}K(\psi^{-1})$, $a_2=h(\psi)$, we can easily see that a_1a_{i+1} is defined for i=0,1, i.e. $h(x)\approx h(\psi)$.

(c) For every $\chi\in \overline{Z}$ there exists $\chi\in \overline{U}$ such that $h^{-1}(0'_q)\subset 0_p$. We have to prove that for any $\chi,\psi\in \overline{G}$ $\chi\psi^{-1}$ is defined, whenever $\chi\psi$ is defined. We have $\chi\psi=\chi\psi\psi^{-1}\psi=\chi\psi^{-1}\psi$ and $\chi\psi^{-1}$ is defined, too.

(d) Finally, if $f_{\alpha}(x)$ is defined, then $\tilde{f}_{\alpha}(h(x)) = h(f_{\alpha}(x))$. We have $h(x)aa^{-1} = K(x)xaa^{-1} = K(x)x = h(x)$ and $\tilde{f}_{\alpha}(h(x))$ is defined. Moreover, we get $\tilde{f}_{\alpha}(h(x)) = h(x)$

$= K(K(x)xa)K(x)xa = K(x^{-1}xa)K(x)xa = K(xa)xa = h(xa) = h(f_a(x))$

and Theorem 3 is proved.

References

- [11 VAGNER V.V.: K těorii častičnych preobrazovanij, Doklady AN SSSR 84(1952),653-656.
- [2] VAGNER V.V.: Obobščennyje gruppy, Doklady AN SSSR 84 (1952),1119-1122.
- [3] FREYD P.: Concreteness, to appear in J. of Pure and Appl.Alg.
- [4] SCHEIN B.M.: Relation Algebras and Function Semigroups, Semigroup Forum 1(1970),1-62.

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, Praha 8 Československo

(Oblatum 21.8.1972)