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A GENERALIZATION OF REFLEXIVE BANACH SPACES AND WEAKLY
COMPACT OPERATORS

Joe HOWARD, Stillwater X’

Abstract

A Banech space X is almost reflexive if every bounded
gsequence in X contains a weak Cauchy subsequence. A conti-
nuous linear operator T: X—>» Y isg a weak Cauchy operator
if it maps bounded sequences of X into sequences in Y which
have a weak Cauchy subsequence., A comparison of this opera-
tor with other related operators is given along with cer-
tain properties of a Banach space involving the weak Cauchy
operator, Conditions are given when the weak Cauchy opera-
tor is equivalent to other related operators.

1. Preliminarieg. A Banach space X is said to be
almost reflexive if every bounded sequence in X .contains
a weak Cauchy subsequence. A weakly complete space which
is almost reflexive is reflexive., A reflexive space is al-
ways almost reflexive,

Let X and Y be Banach spaces and TsX— Y a con-
tinuous linear operator. T 1is said to be a weak Cauchy

operator if it maps bounded sequences of X into sequences
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in Y which have a weak Cauchy subsequence.
If Y is also weakly complete, then T is weakly

compact. All weakly compact operators are weak Cauchy, T

is seid to be a completely continuous operator if it maps
weak Cauchy sequences in X into norm convergent sequen-
ces in ¥ , X 4is seld to be an unconditionally converging
(uc operator) if it sends every weakly unconditionally con-
verging (wuc) series in X into an unconditionally conver-
ging (uc) series in Y, X is said to be an l,, -cogingu~
lar operator providéd that for no Banach space E isomorph-
ic to '11 does there exist epimorphisms gyt X —> E

end h, : Y —> E such that the diagram

is commutative. T 1s £, -cosingular if and only if T',

the conjugate of T , is a uc operator (see [31).

2, Weak Cauchy, 21 -cos uler, and uc opergtors

We now compare the operators weak Cauchy, ld-cosingu-
lar, and uc,

Proposition 2,1, If Ts X —> Y is weak Cauchy, then
T is £, -cosingular.

Proof: Assume that T 1is not an 1,1 -cosingular opera-
tor, i.e.l that there exist epimorphisms Mk, : X—> 2,, and
n,: Y—> 11 such that the diagram
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is comnutative., Since T maps bounded sets into zets whe-
re every sequence has a weak Cauchy subsecuence, then lx,'=
= My T: X—> £, must do the same. Let K denote the
unit sphere of X . Since l,' is weakly complete, cvery
gequence of h,'(x) contains a weakly convergsnt subsq—
guence. lence M.,, is weakly compact, and since h1 is an
epimorphism, .l,., must be reflexive, This contradiction
conpletes the proof,

Corollary 2.2, If T is wesk Cauchy, then T’ is a
uc operator.

Proposition 2,3. If T’: Y’ ——> X’ is weak Cauchy,
then T is a uc operator.

Proof: Assume T is not uc. By Lemma 1 of [2], the

diagram
T
X ——> Y
4"1 ‘i’l
)

is commutative where 4‘,4 and 4‘2 are isomorphic embed-
dings.
Hence the diagram

T’
y—x
of o
Y 4
24
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is commutative where 4.:' and 4':2 are epimorphisms. Since
weak Cauchy convergence implies norm convergence in 14 ’
47 1is completely continuous. Since T’ is wecalk Cauchy,

i3 = 44T’ is compact. Now 47 is onto, so £, is fi-
nite dimensional., This contradiction shows that T must be
uce

Remark: From [3] we know that if T’s ¥/—> X’ is an
£, -cosingular operator, then T: X —» Y is a uc opera-
tor, The following example shows that the conversze is not
true. This example was communicated to me by A, lcolczynski.

Example 2.4 If T+ X —> Y is a uc operctor, then
T’ is not necessarily an £4 ~cosingular operctor.

Proof: Let X be o Banach space with a boundedly comp-
lete basis. Then by Theorem 1 of [4] therc exisis a separab-
le space E such that E”=JE +F vhere JE is the natu-
ral image of E into E’ end vhere F is isomorphic to
X.

Wowput X = £, and ¥ = E”, 3ince ¥ is separab-
le, Y=L’ 1is separzble. Hence Y does not contain & sub-
space igomorphic to ¢4 because if a conjugate Banach gpace
contains a subspace isomorphic to e, , 1t contains a subspa-
ce isomorphic to m by Theorem 4 of [1l) and hence ¥ could ‘
not be separeble. Thus the identity operator I ¢t Y— Y
is a uc operator but its conjugate I’ is clearly not an 24-
cosingular operator.

Remark: The identity operator 1T Co—> & ig weak
Cauchy and 1,4 -cogingular but not uc. I1’% Ly—> £y is uc

but not weak Cauchy end not £, -cosingular. I”sm — m is
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not weak Cauchy and not uc but is l, -cosinéular. Hence
the converses of :ropositions 2.1 and 2,3 are hot true,
Mso if T is weak Cauchy, then T’ is not necessarily

weak Cauchy.

3. lieak Cauchy Y and weak Ceuchy V’ properties.

Wie now consider spaces X vwhich arc such that the
conversces to Iropogitions 2,1 and £,3 hold,

Definition 3.1, Let X be a Lanach space. X hacs the

wegk Couchy VYV property if it satisfies on:s of the follo-
ving ccuivalent conditions:
(a) For every B -space ¥ , every uc operator T: X— Y
iz guch that TY: Y X’ is weak Cauchy.
(b) Svery subset K’ of X’/ satisfying the condition
(+) %“w' X'%X, = 0 for every vuc series %x,,‘_ inX
hes a weak Cauchy sequcnce.

femark: The proof that (a) and (b) are cquivalent is
similar to the proof for rroposition 1 of [6), X is said
to have property V if for overy B -space Y ,every uc
operator T: X —>» Y is weakly compact, X hos weak Cau-
chy V property and X’ is weakly complete if ond only if
X has property YV (zce Corollary 5 of [61),

fropogition 3,2, Let X Dbe weakly complate. Then X

has weak Cauchy ¥ if and cnly if X’ is almost reflexive,

Proof: Since X is weckly complete,by Orlicz ‘s theo-
rem evary wuc series in X is uc. Thus every bounded set
in X’ satisfies the condition (+). Since X has weak

Cauchy Y , 2very bounded set in X’ has a weak Cauchy
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scquence, S0 X’ is almost reflexive., The converse is clear.
Definition 3.3. Let Y be a Banach space. ¥ hap the

the weak Cauchy V’/ property if it setisfies one of the fol-

lowing equivalent conditions:

(c) For cvery B -space X , every &, -cosingular operator

Ts X—» ¥ 1s weak Cauchy,.

(d) BEvery subset X of Y satisfying the condition

++) m W 4n % = 0for every wuc series %9"& inY”’
has a weak Cauchy sequence.

Remark: The proof that (c¢) and (d) are equivalent is
similar to the proof for (a) and (b) in Definition 3,1 using
the fact that T’/ is uc. Y is said to have property ¥’ if
for every B -space X , every £, -cosingular operator
Ti1X— Y is weakly compact. Y has weak Cauchy Y’ and
Y is wcakly complete if and only if Y has property V'
(see Proposition 6 of [61).

Proposition 3.4. Let Y’ be weakly complete, Then Y
has weak Cauchy ¥’ if and only if Y is almost reflexive,

Proof: The proof is similar to the proof of Proposi-
tion 3.2,

Remark: By following [6], we have the following:

(A) Let X have weak Cauchy YV’ property. Then X is al-
most reflexive if and only if no complemented subspace of
X is isomorphic to 11 , (B) Let X have weak Cauchy Y
property. Then X’ is almost reflexive if and only if no
subspace of X is iromorphic to ¢, .

Propogition 3.,5. If X has weak Cauchy ¥ then X’

- 678 =



has weak Cauchy V’ ; if X’ has weak Cauchy Y then X
has weak Cauchy Y’ ., »

Proof: The proof follows from Definitions 3.1 and 3.3.

Remark: We show that the converses of Froposition
3.5 are not true. For properties ¥V and ¥V’ this is not
known (see [61),

Example 3,6+, If X” has weak Cauchy VY’ , then X does
not necessarily have weak Cauchy V .

Proof: Consider the space X = E’ given in Example
2.4, Since I : E’—» E’ is'uc but 1’4 E”— E” 1s not
weak Cauchy, X = E’ does not have weak Cauchy Y . But
X'=mE”=JE +F  vhere F 1is isomorphic to £, and both
E eand £, have weak Cauchy Y’ property. Therefore X’
has weak Cauchy V’ .

Exemple 3.7. If X has weak Cauchy ¥’ , then X’ does
not necessarily have weak Cauchy V .

Proof: Consider the space X = E’' as given in Exemp-
le 3,6, Since E’” is separable, .E’ is almost reflexive;
therefors X = E’ has weak Cauchy Y’ propeity. Since
1:E”—> E” is uc but I’ is not weak Cauchy, X’ = E”
does not have the wge.k Cauchy Y property.

Remark: The B -space E is an example which has weak
Cauchy Y but not property ¥ . Also E has weak Cauchy
Y’ but not property V’ .,

4, Dunford - Pettis property
A Banach space X is said to have the Dunford-Pettis

(D.P.) property provided that for every Bamnach space Y ,
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every weakly compact linear operator T s X —» Y is
completely continuous,

Theorem 4,1, Let X be a Banach space, X has the
D.P. property if and only if for cvery B -space Y, cvery
weak Cauchy operator T‘; Y —> X’ 1is such that T is
completely continuous,

Proaf: (¢== ) This follows since if T is weakly com-
pact, T’ is weakly compact and hence‘ T’ is weak Cauchy.

(=) It suffices to show for every B -space Y, if
T’ is weak Cauchy, then X%n- NTxn, N = 0 for every weak-
1y convergent to 0 sequence {x,% . Let l;;n_; ITxpll =
=d =0, Let ¢y vith gyl =4 be such that g, (Tx,)=
= ITx, Il for all m , Put xj, = T'gf .Thus w.l.0.g. ve

assume faz‘l is a wieak Cauchy sequence, '/e have
&'gw M;‘Xﬂ - %( "":n-)“n = %lr l’.:”('r#t“) - %"Ta‘“" =d.

Ve now show J = 0 vhere Um Ix"»x”"l = d, Let fm3 be
a subsequence of {m3} such that Ixj X, | € 072 , Since {x,}
weakly converges to 0 such o subsequence {m} exists.

We have

’ ’ ’ ’
X, ™ (g = X VX X X

X
Since fx,, - x, weaxly converges to 0 , we obtain
S tim gy X | & l‘,,,","'l“*:m"‘:»)"m' +um lxy x| € 572 .
Thus J- 0 .
Corollar 2e Suppose X or X’ has D,I., property
and X’ is almost reflexive., Then a cequence in X 1is veak

Cauchy if and only if it is norm Czuchy.



Proof: If X’ has D.P. property then so does X (see
[71); so it suffices to take X with the D.P, property.
Since X’ is almost reflexive, I’:X’—> X’ is weak Cauchy.
By Theorem 4,1, I: X—> X 1s completely continuous and
the result follows. '

Corollary 4,3. Let X have weak Cauchy Y and D.P,
properties, and let T:X~—Y . Then the following are equi-
valent.

() T 1is uc,
(b) T’ is weak Cauchy,
(¢) T 4is completely continuous,

(a) T’ is L4 -cosingular.

Proof: (a)==»>(b) = (¢) is clear. (¢) == (a) follows ' ‘
from Proposition 1,9 of [2], To complete the proof it suffi-
ces to show (b) ==>(d) =>(a). Now (b) => (d) follows from
Proposition 2.1 and (d) == (a) is found in L[31,

We now consider somewhat a dual notion for the D,P.
property.

Theorem 4,4, Let ¥ be a Banach space., Y ims the D,P,
property if and only if for every B -space X , every weak
Cauchy operator T:X —> Y is such that T’ is completely
continuous,

Proof: (&= ) By [7] it suffices to show for every weak-

ly convergent to 0 sequence {n‘m? in Y and for every
veakly convergent to 0 sequence {gin? 1n Y’, Lm 4, 4p=
= 0, Let {4y} be an arbitrary weakly convergent to 0 se~
quence in ¥, Consider the linear operator T co— Y

vith T"n" Ym whexre en denotes the n-th unit vector in

- 681 -



6, .Then T’y Y'—» £, 18 completely continuous. By the
properties of T/, Ty (ey) = 4/(Tey) = 4’ (4,) for 'eve;
Ty q,' in Y’ Now let {t'.',,,,? be an arbitrary sequence in
Y’ weakly convergent to 0. Then 0 = légv T gy Il =

= L nups |4 (%¥n )| . Hence L,&wry.;,q”- 0 and so Y has
the D.P, property.

(==>) Suppose Ts X —> Y is weak Cauchy and ¥ has D.P.
property. It suffices to show &g& NT'4, Nl = 0 for
every weakly convergent to 0 sequence {y.'m? . Let x, with
Wxpll =1 be such that T'gmp, (xs) = T4/l for all
m . Put 4y = Tx, . The rest of the proof is analogous to
that given in the proof of Theorem 4.1,

Corollary 4,5, If X 1s almost reflexive and X or X’
has D.P, property, then a sequence in X’/ 1is weak Cauchy if
and only if it is norm Cauchy.

Remark: The proof of Corollary 4.5 is similar to that

of Corollary 4.2, Using Corollaries 4.2 and 4,5 we have that
if X’ has D.P, and is almost reflexive, then weak Cauchy
sequences correspond to norm Cauchy sequences in both X
and X" .

Corollary 4,6, Let ¥ have weak Cauchy Y’ and D,P,
properties, and let T3 X—> Y . Then the following are
equivalent,

(a) T’ is ucy

(b) T 1is L,-cosinguler.

(¢) T 1is weak Cauchy.

(d) T' is completely continuous.
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Proof: (a) ==>(b) ==> (c) == (d) is clear. (d) ==> (a)
follows from Proposition 1.9 of [21],

Corollary 4.7. Let X have weak Cauchy ¥ , X’ have
D.P., property, Ts X—» Y and T’: Y—> X’, The follow-
ing are equivalent,
(a) T 1is uc.
(b) T’ 4is weak Cauchy.
(¢) T is completely continuous.
(d) T’ is A, -cosingular.
(e) T” is uc.
(£) T” is completely continuous.

Proof: The proof follows easily using Corollaries 4.3
and 4.6, Proposition 3.5, and the fact that X’ has D.P.
implies X has D.P.
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