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A NOTE ON VOLTERRA INTEGRAL EQUATIONS WITH DEGENERATE
KERNEL

Ji¥{ CERHA, Praha

In the paper several relations between the linear

vector - valued Volterra integral egquation N
t

(1) x(t) = a(t) + [ Blt,p)x(s)dn
0

and the initial - value problem
x - P(t)x = ¢ (t)

’

(D)
x(0) = x,
are investigated. Particularly it is shown that under so-
me weak assumptions the following ‘three assertions are '
equivalent:
(1) the kernel B of the equation (I) is degenerate;
(11) there exists a matrix P(+t) such that the
function B (., ) satisfies the equation in (D) with
Q=03 .
(1ii) the solution of the equation (I) satisfies so-
me special initial - value problem of the type (D).

Analogous results are obtained for the case of an

AMS, Primary: 45D05 Ref. Z. 7.948.323
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initial - value problem for a differential equation of a
higher order.

The results generalize those obtained by J. Nagy and
E. Novdkovd in [2] for a special type of the kernel B .

1. Notation. Let for m,m=1,2,.,. R™*™ (X™™)
denote the space of all real (complex) matrices of the ty-
pe m x m , The m -dimensional vectors will be identified
with the column matrices (of the type m x4 ) for m =
=4,2,... , end R™, X™ will stand for X™* x™*1
regpectively. Analogously for vector‘ valued functions. We
shall denote the identity matrices by I and the zero mat-
rices by 0 .

Let 6 ¢ R* be a domain in R®™ , let G be the
closure of G , Then C,f::” ¢) for m,m =4,2,...; bk =
=0,4,2,... denotes the space of all mx m complex &k~
times _continuously differentiable matrix-valued functions
on G .(The function is 0 -times continuously differenti-
able if it is continuous; we define the 0 ~th derivative
of a given function to be equal to the function itself.)

Let ﬁn‘-,>0, mg >0 for ©=4,2,..,40; 3=41,
2,..., ¢ be integers, Y;; & X™" ™%  We shall identify
the matrix

Y, Y,

a Yy oo Yy

L%
Y, Yoo Ty

o e o+ 0 0 0 0 * 00

Yor Yoo Yag
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with the corresponding element of KM"“ 3 vhere M =

=mutmo+...+mpy, Nam+my+...+my .

The partial derivatives of a function £ with the

domain in R®™ will be denoted by

Lt
a"* P f(yyeeny ily)

3.«.4 o au.«”

. 2 00erd
o) = DT TEw) =

vhere 4 =(i,,...,44) denotes some multiindex, p =
=4,2,... . Further, the set {[$,51] eR2:t=zp=20%
will be denoted by A and the intervel {0, @) by R, .
Finally, in what follows, the symbols m , m will stand
for integers, m = 1, » =24, % 20 and P, B will be
elements of C::L“(K“) , C:f;m' (A) respectively,

2, Problem., The main purpase of the paper is to find
some assumptions on the kernel B and the forcing function

a so that the solution of the Volterra integral equation
+

(1) x(£) = a($) + [TB(t,5)x(p)dp, ¢ 20
o .

may satisfy some special initial value problem for an ordi-
nary differential equation.

The following theorem is well knowm.

3. Theorem, Tet P e Chm (R, g & Chm (R,),

A0, x, €« K*"*™ | Then there exists a unique

solution % @ C:&m ((4,, co)) of the initial value pro-

blem
(34) x-Pt)x=qt), t>n ,
@) (3,2) x(n) = Xy o
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4, Remark. The following viell knovn voriation of con-

stants formula:
- t =
(4.1) x(£) = HOOHGBY X+ [[HOHW "gurda, t 2 5,

holds for the solution x of (D) “here He C,‘,:LM(K,,_) is
the solution of the square-matrix initial value problem ( X

is a regular square matrix)
(4.2) X =PIX, X=X .

The follor ing theorem holds for the equation (I). (See
R.K, liller [11.)

5. Theorem. Let a e C,::’,,,(R.,) , Be e CB) .

Then there exists a unique solution x € Cﬁf‘,{m (R,) of the

equation (I), which is given by
(5.1) X (4) = a(t) + L‘xct,»mcuu, t20 ,

vhere R is the resolvent kernel of the kernel B . This

kernel R 1is the unique solution of the resolvent equation

(5.2) R(t,») = B(t, )+ J:B(t,u,)ll(w,m)dw, 0&nrot .

6., Remark, In what follows we shall be interested espe-
cially in the case of degenerate kernels, i.e. kernels B of

the form

(6.1) BCt,n) = Loy (£,4015 .

with b{;‘ (t,4) = u;‘_(t)cg’- (BYyt=n 20 ;4:,3"- 1,2,..,m,

‘b‘é’ /v;’ being some sufficiently many times continuously
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differentiable matrix functions of the type 4 x k;,,', )
‘b‘-j." 4 respectively, defined on R .

7. Lemma. Let B € C™ (A) be the degenerate ken
nel (6,1), Then there exist an integer m =4 and

UeC™ (R,), Vel n (R,) so thet
(7.1) B(t,n) = W(EI)V(n) , t2H=0 .

It is possible to choose m =2 m ond the matrix W in

the form
L=CTI,Uq] .

Proof. Obviously, we can choose W in the form
Mg gy oo o Mg, o0 ...0 ...0 0 ..0
0 0 ...0 Mgy Myp ooe Mgy ooe 0 0 ...0
U= I

@ 4 4 ¢ caw 4 & ¢ 0 0 8 s ses s & s st & e s

0 0 ...0 0 0 ...0 .oothygilygereMlyy

and the transposed matrix VT of the matrix V in the

form
= - T T -
Mg 0 .0 0 4y, 0 ... 0 ..., 0 ... 0
T T T
. 0 Yy oe- 0 0 nrn...o ere 0 w,...0
vi= |0
T T T
| 0o 0 ... v;mO 0 coo Wppoes 0 0 o0ootpy

So we obtain

"
m=m 4,2 W,: .
= P <3
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3. Theorem, Let B e Cf,::,m (A) ‘e the degenera-
te kernel (6.1), a & C,ff’ (R,) . Then there exist an
integer o, 4 >m and ﬂ:,\”f € ‘4‘,"14, (R,) such that
U(t) is a regulcr square-matrix for all + = 0 and the

following assertion holds:

Let us define B e Cm”‘,,(A) 2 e C::’(R,_) by
means of
(8.1) Bet,p) = Wd)¥(n), tZ520 ,
Q
& ’[o] )

Let X € CL(R,) , xeCP(R,), 4 & Cla(R)

and 1=t it hold

Then

(1) if X 1is ¢ solution of the equation
; % o
(c.2) F4) = B + [ B, )X dn, t20,

then X is = solution of (I);
(ii) if x is = zolution of (I) then there exists such a

y e c(ﬂjﬁ(kﬂ that ¥ = [:] is a solution of (8.2).

Iroof, Vie can rut
wil ®)
[ ] c(m-o-m-)n (m+m) (R-&) )

” C(M (R )
0 0 € me+mIx (mim) + ?
vhore W ,V cre matrices of the types m x m, m xm

respectively described in Lemma 7. Then p=m+m
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f(t,b) = [B“’"’) D]
VA 0

and (i) holds. Let ¥ be the solution of (I). Set

g (t) = jtV(b)x(la)d-b, t20.
[4

Then X satisfies (8.2) and (ii) holds as well.

9. Remark. For some special kernels B the conclucion
of Theorem 8 (or, more precisely, its casy modification) '
holds with hp =m .

Lemma 7 asserts thet each degenercte kernel may be ex-
pressed in the form (7.1). So we shell pay attention only
to the degenergte kernels of this type. From Theorem 8 it
follows that each equation (8,2) with a degenerzie kernel
may be complemented so that the equation (8.2) with the ker-
nel (8.1) will be obtained. Therefore 1t is sufficient to
consider only such equ-tions (I) with a degenerate kernel
vhere the kernel B is of the form (7.1l) with a regular

square matrix W .,

10. Theorem. Let W & CS%pm (R, Ve £ (R,
B(t,») = WtIV(n) ,t2n20 aﬁd let E e ¢ (R
be the solution of the matrix initial value problem
(10.1) E=V(UGE, E(O)= T .

Then the function
(10.2)  R(t,4) = WHEHEW Vo), tz 520

is the resolvent kernel of the kernel B .
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Proof. Cleérly

t t
[ BtuIR G, ) du = [ LIV W) E I E o VrIdu =

t .
= W(t) [ VOOUWIE w)da ET Vi) a () [TEw)daE I Vim-
=W LEM) —EMIEB)'Vm = R(t,5) ~B(t,» ,

t2as20 ,
so that R satisfies the resolvent equation (5.2),

11. Theorem. Let B & C¢ (A) .

m»xm
Then the following threc assertions ere equivalent:

(i) there exist W € C,::;W(.K*) regular on R, eand

Vel (R, so that
(11.1) B(t,n) = W(EIV(n), t2nH 20 ;

(ii) there exists P e C,(:,,.,,._ (R,) (vhich is uniquely
determined by B ) so that

(11.2) D"B(t,n) - P()B(t,p) =0, t=n =0,
(1i1) there exists P e C,‘,:’,,,,,,C]l,,) (which is uniquely
determined by B ) so thet for all a € Cf,:’ (R,) the

solution X of the equation (I) satisfies the initial va-

lue problem

(11.3) & =-TLP(4) +B(4,tx = a@®)-P(Hla(t) ,
(11.4) x(0) = a(0)

(This P is the same as that in (ii).)
Proof. (i) => (ii) From (11.,1) it follows

DBt )= W)V = WU TURIV(A) = P(£) B(t, )
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vhere P(t) = WU, ¢£20 .

(ii) ==> (i) Let H ©be the fundamental matrix of
the system X = P(t)x . Then (11.2) and Theorem 4. imp-
1y (11.1), vhere U(A)=H(4), V(A =H(»)"B(s,»), »Z0.

(11) ==> (iii) Let x be the solution of (I); a ,
B continuously differentiable, Then

A(8)= a(8) Bl 1) + [DBCE, I (R)As, £20 .
Simple calculation gives

(11.5) & (#) = CP(#) + B, 8)1x(#) = ["LD" B¢, 5) -
- PYB(E, ) x(m)ds + &(+) - P(B)alt), £20 .

Now (11,3) follows from (11,2) and (11.5).
(iii) ==> (4i) Let the solution x of (I) satisfy
the initial value problem (11,3-4). Then (11.5) holds.

Hence and from (11.3) we obtain

(11.6) j:rn""su,/a)-rms(t,m:lx(»)db =0, tz0.

From the equation (I) it follows that for each x &

)
ect

(R,) there exists a e C (R,) so that x
is the solution of (I)e So (11.6) holds for all x e

e CSP(R,) end (11,2) is satisfied,

12, Remark. Theorems 8 and 11 imply the following
assertion for a degenerate kernel B € C:,:Lm «a)
and a e C,‘;;" (R,) . It is always possible to comple~
ment the matrix B  and the forcing function @ in (I)

so that the new kernel satisfies the equation of the form
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(11.2) and the solution of the complemented equction satis-
fies the initial value problem of the form (11.3-4).

It also follows from Theorems 7 and 10 that the re-
solvent kernel R of a2 smooth degenercte kernel B is

given by (10.2).

13. Remark. Theorems 10 and 11 imply immediately: if
a kernel B fulfils the equation (11.,2) then
(1) B is degenerate;
(11) a solution of (I) (with smooth @ ) is also a solu-
tion of (11,3-4);
(1ii) the resolvent kernel R may be written in the form
(10.2).

The investigations described above may be modified
and generalized in many ways. One of such modifications

villl be described now.

14, Theoran. Let Ag,Aq, -y Agp & CE%, (R,

Ay =1,BeC (8), asCP(R,).

Let for ell » 2 0 the function B (., ») satis-
fy the equation

& )
(14.0) ,'?-OAJHD x(t) =0

on <p,00) .
Then
(1) the kernel B is degcnerate;
(11) the function x e C{®(R,)  1is a solution of (I)
if and only if it is 2 solution of the initial velue problem
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(14.1) ‘?o};(t)])‘x(t) =q(t), t>0 ,

i *1 i ;
(14.2) D"%(0) = 31 Gy (D %(0)= B0 (0); m 0,400 o1

vhere

ML 1 (”’; ‘,) El-n-i

(14.3) }‘l(t) -A.z(f) -,‘go 4.0 A‘O’l#év‘vﬂ (f’ x

x DBt t) s Rm 0,4,k

| .
(14.4) g(t) = = A ()D%act); t20,

i=-L-1 Aad oA\ 2.i 0.4 ;)0
(14.5) G“ct)._;_‘:.o( g )n"" ¥ B(t,t), t20

Lm0,y b=y im0,4,.., %

o
and vhere we set , & ,., m 0 vheneven p=<0.
20

Iroof. /e prove the aczertion (i). Tet ug introduce

the matrix functions

0 I o0...0

%
. N 0 0 I...0

X = | X 5 A . .
xR=D ~Ay Ay Agoe = Ay,

~
Clearly A ecﬂka<1+) end X € C“:") (R 32~

tisfies the equation (14.1) if and only if K e Cfb‘,:l_fl‘,)
and & is the solution

¥=Xwrx .
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If ﬁ is the fundamental matrix of the last equation, then
its solution & may be written in the form
S =Hc)Xc0) ,£20 .

Setting = H.,
H =
H,
vhere the sub-matrix H, e C,‘;Lhn (R,) , we get for the
solution x of the equation (14.0)

x(t) = Ho (£)XC0), t20 .

Using this and the assumptions of the theorem we obtain

B(s,n) ]

DB (n,»)
Bet,s) = H O Hy | ,tzmz0

2% "B, )

so that B 1is degenerate and the assertion (i) holds.

Now we shall consider (ii). From (14,3) it follows
Fao = Ay =1 . The values x (0), Dx (0),..., D*" % (0)
are uniquely defined by (14.2)., It is possible to transform
the equation (14.1) into the first order differential equa-
tion as we transformed the equation (14,0) sbove, Hence and
from Theorem 3 it follows that the initial value problem

(14,1-2) is uniquely solvable in C::") (R,) .

Let X be the solution of the equation (I). Let us
express the derivatives D"‘x in the form

(14.6) D'x(4) = Do) + & ¥x() + [F29Bct,0) x (s
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4 =0,1,..., & . Differentiating the boths sides of
the equation (I) and ugsing (14,5-6) we obtain

g1

3 ¢=1 A
(14.7) d"xce)=;zop"'" [D* B, 40x(4)] =

&=
=, 3 Cig(ODEx () 5 £20;5 4 m 0,4,y b 5
S z R <=1 2
- . ) t) =
(14.8) 4§0A¢(t)d‘ x(t) =, 3 Ap(4) & G (£)D7x(

v
L
= S TA D -FEID x(), x=0 .

One has

| 7] . . N i

A (D () = = A, +, 2, A (00 xH) +
vl 10 =

® ,
*[F A, 00" B, muiards, t20

Since B (., ,b) is the solution of (14.1), the last
term equals zero. Hence using (14.8), we obtain (14.1), .whe-
re Fp, @ ~ are defined by means of (14.3-4) respective-
ly. Putting t+ = 0 in (14.6) and using (14.7) we obtain
the initial conditions (14,.2).

Converse}y, gince the solution of the initial value
problem (14,1-2) is unique and the solution of (I) exists,
it follows from the above a.'rgument that the solution of the

initial value problem (14.,1-2) solves (I),
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