

Werk

Label: Article **Jahr:** 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0013|log61

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 13,4 (1972)

A NOTE ON VOLTERRA INTEGRAL EQUATIONS WITH DEGENERATE KERNEL

Jiří CERHA, Praha

In the paper several relations between the linear vector - valued Volterra integral equation

(I)
$$x(t) = a(t) + \int_{0}^{t} B(t, h)x(h)dh$$

and the initial - value problem

$$\dot{x} - P(t)x = Q(t) ,$$

$$x(0) = x_0$$

are investigated. Particularly it is shown that under some weak assumptions the following three assertions are equivalent:

- (i) the kernel B of the equation (I) is degenerate;
- (ii) there exists a matrix P(t) such that the function B(., &) satisfies the equation in (D) with 2 = 0;
- (iii) the solution of the equation (I) satisfies some special initial - value problem of the type (D).

Analogous results are obtained for the case of an

AMS, Primary: 45D05

Ref. Ž. 7.948.323

initial - value problem for a differential equation of a higher order.

The results generalize those obtained by J. Nagy and E. Nováková in [2] for a special type of the kernel ${\bf B}$.

1. Notation. Let for m, m = 1, 2, ... $R^{m \times m}$ $(K^{m \times m})$ denote the space of all real (complex) matrices of the type $m \times m$. The m-dimensional vectors will be identified with the column matrices (of the type $m \times 1$) for m = 1, 2, ..., and R^m , K^m will stand for $R^{m \times 1}$, $K^{m \times 1}$ respectively. Analogously for vector valued functions. We shall denote the identity matrices by I and the zero matrices by O.

Let $G \subset \mathbb{R}^n$ be a domain in \mathbb{R}^n , let \overline{G} be the closure of G. Then $C_{m \times m}^{(k)}(G)$ for m, m = 1, 2, ...; k = 0, 1, 2, ... denotes the space of all $m \times m$ complex k-times continuously differentiable matrix-valued functions on \overline{G} . (The function is 0-times continuously differentiable if it is continuous; we define the 0-th derivative of a given function to be equal to the function itself.)

Let $m_i > 0$, $m_j > 0$ for i = 1, 2, ..., p; j = 1, 2, ..., Q be integers, $Y_{ij} \in X^{m_i \times m_j}$. We shall identify the matrix

$$\begin{bmatrix} Y_{11} & Y_{12} & \dots & Y_{1Q} \\ Y_{21} & Y_{22} & \dots & Y_{2Q} \\ \dots & \dots & \dots & \dots \\ Y_{p1} & Y_{p2} & \dots & Y_{pQ} \end{bmatrix}$$

with the corresponding element of $K^{M \times N}$, where $M = m_1 + m_2 + \dots + m_4$, $N = m_1 + m_2 + \dots + m_6$.

The partial derivatives of a function ${\bf f}$ with the domain in ${\bf R}^{{\bf f}{\bf t}}$ will be denoted by

$$D^{i}f(u) = D^{i_1, \dots, i_p}f(u) = \frac{\partial^{i_1 + \dots + i_p} f(u_1, \dots, u_n)}{\partial u_1^{i_1} \dots \partial u_p^{i_p}}$$

where $i = (i_1, ..., i_p)$ denotes some multiindex, p = 1, 2, ... Further, the set $\{[t, s] \in \mathbb{R}^2 : t \ge s \ge 0\}$ will be denoted by Δ and the interval $(0, \infty)$ by \mathbb{R}_+ . Finally, in what follows, the symbols m, m will stand for integers, $m \ge 1$, $m \ge 1$, $m \ge 0$ and \mathbb{R}_+ will be elements of $C_{m \times m}^{(0)}(\mathbb{R}_+)$, $C_{m \times m}^{(0)}(\Delta)$ respectively.

2. Problem. The main purpose of the paper is to find some assumptions on the kernel **B** and the forcing function **a** so that the solution of the Volterra integral equation

(I)
$$x(t) = a(t) + \int_0^t B(t,s) x(s) ds, t \ge 0$$

may satisfy some special initial value problem for an ordinary differential equation.

The following theorem is well known.

3. Theorem. Let $P \in C_{m \times m}^{(0)}(R_+)$, $Q \in C_{m \times m}^{(0)}(R_+)$, $s \ge 0$, $s \in K^{m \times m}$. Then there exists a unique solution $s \in C_{m \times m}^{(1)}(\langle s, \infty \rangle)$ of the initial value problem

(3.1)
$$\dot{x} - P(t) \times = Q(t), t > b$$
,
(D) (3.2) $\times (b) = x_b$.

4. Remark. The following well known variation of constants formula:

(4.1)
$$x(t) = H(t)H(b)^{-1}x_b + \int_b^t H(t)H(u)^{-1}Q(u)du$$
, $t \ge b$, holds for the solution x of (D) where $H \in C_{m \times m}^{(1)}(R_+)$ is the solution of the square-matrix initial value problem (X)

(4.2)
$$\hat{X} = P(t)X$$
, $X(0) = X$.

is a regular square matrix)

The follo ing theorem holds for the equation (I). (See R.K. Miller [1].)

5. Theorem. Let $a \in C_{n \times m}^{(k_0)}(R_+)$, $B \in C_{n \times m}^{(k_0)}(\Delta)$. Then there exists a unique solution $x \in C_{n \times m}^{(k_0)}(R_+)$ of the equation (I), which is given by

(5.1)
$$x(t) = a(t) + \int_{0}^{t} R(t, s) a(s) ds, t \ge 0$$
,

where ${f R}$ is the resolvent kernel of the kernel ${f B}$. This kernel ${f R}$ is the unique solution of the resolvent equation

(5.2)
$$R(t, s) = B(t, s) + \int_{s}^{t} B(t, u) R(u, s) du$$
, $0 \le s \le t$.

6. Remark. In what follows we shall be interested especially in the case of degenerate kernels, i.e. kernels B of the form

(6.1)
$$B(t,s) = [b_{ij}(t,s)]_{i,i=1}^{m}$$

with $w_{ij}(t,s) = w_{ij}(t)w_{ij}(s)$; $t \ge s \ge 0$; i,j = 1,2,...,m; w_{ij} , w_{ij} being some sufficiently many times continuously

differentiable matrix functions of the type $1 \times k_{ij}$, $k_{ij} \times 1$ respectively, defined on R_+ .

7. Lemma. Let $B \in C^{(k_0)}_{m \times m}(\Delta)$ be the degenerate kernel (6,1). Then there exist an integer $m \ge 1$ and $U \in C^{(k_0)}_{m \times m}(R_+)$, $V \in C^{(k_0)}_{m \times m}(R_+)$ so that

(7.1)
$$B(t, n) = U(t)V(n), t \ge n \ge 0.$$

It is possible to choose $m \ge m$ and the matrix U in the form

$$u = [I, u_1]$$
.

Proof. Obviously, we can choose U in the form

$$\mathbf{u} = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1m} & 0 & 0 & \dots & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & u_{21} & u_{22} & \dots & u_{2m} & \dots & 0 & 0 & \dots & 0 \\ \mathbf{I} & & & & & & & & & & & & \\ 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 & \dots & u_{m1} & u_{m2} & \dots & u_{mm} \end{bmatrix}$$

and the transposed matrix \mathbf{V}^{T} of the matrix \mathbf{V} in the form

$$V^{\mathsf{T}} = \begin{bmatrix} v_{44}^{\mathsf{T}} & 0 & \dots & 0 & v_{24}^{\mathsf{T}} & 0 & \dots & 0 & \dots & v_{m1}^{\mathsf{T}} & 0 & \dots & 0 \\ 0 & v_{42}^{\mathsf{T}} & \dots & 0 & 0 & v_{22}^{\mathsf{T}} & \dots & 0 & \dots & 0 & v_{m2}^{\mathsf{T}} & \dots & 0 \\ 0 & \dots \\ 0 & 0 & \dots & v_{4m}^{\mathsf{T}} & 0 & 0 & \dots & v_{2m}^{\mathsf{T}} & \dots & 0 & 0 & \dots & v_{mm}^{\mathsf{T}} \end{bmatrix}.$$

So we obtain

$$m = m + \sum_{i,j=1}^{m} k_{ij}.$$

8. Theorem. Let $B \in C_{m \times m}^{(b)}(\Delta)$ be the degenerate kernel (6.1), $\alpha \in C_m^{(0)}(R_+)$. Then there exist an integer p, p > m and \widetilde{U} , $\widetilde{V} \in C_{p \times p}^{(b)}(R_+)$ such that U(t) is a regular square-matrix for all $t \ge 0$ and the following assertion holds:

Let us define $\widetilde{B} \in C_{\mu \times \mu}^{(2e)}(\Delta)$, $\widetilde{a} \in C_{\mu}^{(0)}(R_{+})$ by means of

$$(8.1) \qquad \widetilde{B}(t,s) = \widetilde{\mathcal{U}}(t)\widetilde{\Upsilon}(s), \ t \ge s \ge 0,$$

$$\alpha = \begin{bmatrix} \alpha \\ 0 \end{bmatrix}.$$
Let $\widetilde{\mathbf{x}} \in C_n^{(0)}(\mathbf{R}_+), \ \mathbf{x} \in C_m^{(0)}(\mathbf{R}_+), \ \mathbf{y} \in C_{n-m}^{(0)}(\mathbf{R}_+)$

and let it hold

$$\widetilde{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$
.

Then

(i) if \mathbf{x} is a solution of the equation

(8.2)
$$\widetilde{x}(t) = \widetilde{a}(t) + \int_{0}^{t} \widetilde{B}(t, h) \widetilde{x}(h) dh, t \ge 0$$
,

then x is a solution of (I);

(ii) if x is a solution of (I) then there exists such a $y \in C_{p-m}^{(0)}(R_+)$ that $\tilde{x} = \begin{bmatrix} x \\ y \end{bmatrix}$ is a solution of (8.2).

Iroof. We can put

$$\widetilde{\mathbf{U}} = \begin{bmatrix} \mathbf{U} & \mathbf{I} \\ \mathbf{I} & 0 \end{bmatrix} \in \mathbb{C}_{(m+m) \times (m+m)}^{(m)} (\mathbf{R}_{+}) ,$$

$$\widetilde{V} = \begin{bmatrix} V & 0 \\ 0 & 0 \end{bmatrix} \in C_{(m+m)\times(m+m)}^{(n)} (\mathbb{R}_+) ,$$

where u, v are matrices of the types $m \times m$, $m \times m$ respectively described in Lemma 7. Then p = m + m,

$$\widetilde{\mathbf{B}}(\mathbf{t}, \mathbf{s}) = \begin{bmatrix} \mathbf{B}(\mathbf{t}, \mathbf{s}) & 0 \\ \mathbf{V}(\mathbf{s}) & 0 \end{bmatrix}$$

and (i) holds. Let x be the solution of (I). Set $y(t) = \int_{0}^{t} V(s) x(s) ds, \quad t \ge 0.$

Then \mathfrak{F} satisfies (8.2) and (ii) holds as well.

9. Remark. For some special kernels **B** the conclusion of Theorem 8 (or, more precisely, its easy modification) holds with n = m.

Lemma 7 asserts that each degenerate kernel may be expressed in the form (7.1). So we shall pay attention only to the degenerate kernels of this type. From Theorem 8 it follows that each equation (8.2) with a degenerate kernel may be complemented so that the equation (8.2) with the kernel (8.1) will be obtained. Therefore it is sufficient to consider only such equations (I) with a degenerate kernel where the kernel B is of the form (7.1) with a regular square matrix U.

10. Theorem. Let $U \in C_{m \times m}^{(0)}(R_+)$, $V \in C_{m \times m}^{(0)}(R_+)$, B(t,s) = U(t)V(s), $t \ge s \ge 0$ and let $E \in C_{m \times m}^{(4)}(R_+)$ be the solution of the matrix initial value problem

(10.1) $\dot{E} = V(t)U(t)E$, E(0) = I.

Then the function

(10.2) $R(t, s) = U(t)E(t)E(s)^{-1}V(s)$, $t \ge s \ge 0$ is the resolvent kernel of the kernel B.

Proof. Clearly

 $\int_{b}^{t} B(t, \omega) R(\omega, s) d\omega = \int_{b}^{t} U(t) V(\omega) U(\omega) E(\omega) E(s)^{-1} V(s) d\omega =$ $= U(t) \int_{b}^{t} V(\omega) U(\omega) E(\omega) d\omega E(s)^{-1} V(s) = U(t) \int_{a}^{t} \dot{E}(\omega) d\omega E(s)^{-1} V(s) =$ $= U(t) [E(t) - E(s)] E(s)^{-1} V(s) = R(t, s) - B(t, s) ,$ $t \ge s \ge 0 ,$

so that R satisfies the resolvent equation (5.2).

11. Theorem. Let $B \in C_{m \times m}^{(1)}(\Delta)$.

Then the following three assertions are equivalent: (i) there exist $u \in C_{m \times m}^{(1)}(R_+)$ regular on R_+ and $V \in C_{m \times m}^{(1)}(R_+)$ so that

(11.1)
$$B(t, s) = U(t)V(s), t \ge s \ge 0;$$

(ii) there exists $P \in C_{m \times m}^{(0)}(R_+)$ (which is uniquely determined by B) so that

(11.2)
$$D^{4,0}B(t,s) - P(t)B(t,s) = 0, t \ge s \ge 0$$
;

(iii) there exists $P \in C_{m \times m}^{(0)}(R_+)$ (which is uniquely determined by B) so that for all $a \in C_m^{(1)}(R_+)$ the solution x of the equation (I) satisfies the initial value problem

(11.3)
$$\dot{x} = [P(t) + B(t,t)]x = \dot{a}(t) - P(t)a(t)$$
,

$$(11.4)$$
 $\times (0) = a(0)$

(This P is the same as that in (ii).)

Proof. (i) \Longrightarrow (ii) From (11.1) it follows $D^{1,0}B(t,s) = \dot{\mathbf{u}}(t)Y(s) = \dot{\mathbf{u}}(t)u(t)^{-1}u(t)Y(s) = P(t)B(t,s)$

where $P(t) = \dot{u}(t)u(t)^{-1}$. $t \ge 0$.

(ii) \Longrightarrow (i) Let H be the fundamental matrix of the system $\dot{x} = P(t)x$. Then (11.2) and Theorem 4 imply (11.1), where U(a) = H(a), $V(a) = H(a)^{-1}B(a,a)$, $a \ge 0$.

(ii) \Longrightarrow (iii) Let x be the solution of (I); a , B continuously differentiable. Then

$$\dot{x}(t) = \dot{a}(t) + B(t,t) + \int_{0}^{t} D^{1,0} B(t,s) x(s) ds, \quad t \ge 0.$$

Simple calculation gives

(11.5) $\dot{x}(t) - [P(t) + B(t,t)]x(t) = \int_0^t [D^{4,0}B(t,s) - P(t)B(t,s)]x(s)ds + \dot{a}(t) - P(t)a(t), t \ge 0$.

Now (11.3) follows from (11.2) and (11.5).

(iii) ⇒ (ii) Let the solution x of (I) satisfy the initial value problem (11.3-4). Then (11.5) holds. Hence and from (11.3) we obtain

(11.6) $\int_0^t [D^{4,0}B(t,s) - P(t)B(t,s)]x(s)ds = 0, t \ge 0.$

From the equation (I) it follows that for each $x \in \mathcal{C}_m^{(4)}(\mathbb{R}_+)$ there exists $a \in \mathcal{C}_m^{(4)}(\mathbb{R}_+)$ so that x is the solution of (I). So (11.6) holds for all $x \in \mathcal{C}_m^{(4)}(\mathbb{R}_+)$ and (11.2) is satisfied.

12. Remark. Theorems 8 and 11 imply the following assertion for a degenerate kernel $\mathbf{B} \in \mathbb{C}_{m \times m}^{(4)}$ (Δ) and $\mathbf{a} \in \mathbb{C}_m^{(4)}$ (\mathbf{R}_+). It is always possible to complement the matrix \mathbf{B} and the forcing function \mathbf{a} in (I) so that the new kernel satisfies the equation of the form

(11.2) and the solution of the complemented equation satisfies the initial value problem of the form (11.3-4).

It also follows from Theorems 7 and 10 that the resolvent kernel **R** of a smooth degenerate kernel **B** is given by (10.2).

- 13. Remark. Theorems 10 and 11 imply immediately: if a kernel **B** fulfils the equation (11.2) then
- (i) B is degenerate;
- (ii) a solution of (I) (with smooth a) is also a solution of (11.3-4);
- (iii) the resolvent kernel ${\bf R}$ may be written in the form (10.2).

The investigations described above may be modified and generalized in many ways. One of such modifications will be described now.

14. Theorem. Let
$$A_0$$
, A_1 , ..., $A_m \in C_{m \times m}^{(0)}(R_+)$, $A_m = I$, $B \in C_{m \times m}^{(m)}(\Delta)$, $\alpha \in C_m^{(m)}(R_+)$.

Let for all $s \ge 0$ the function $B(\cdot, s)$ satisfy the equation

on (, , oo) .

Then

- (i) the kernel B is degenerate;
- (ii) the function $x \in C_n^{(k)}(R_+)$ is a solution of (I) if and only if it is a solution of the initial value problem

(14.1)
$$\sum_{\ell=0}^{\infty} F_{\ell}(t) D^{\ell} x(t) = q(t), \quad t > 0 ,$$

(14.2)
$$\mathbf{D}^{i} \times (0) - \sum_{\ell=0}^{i-1} \mathbf{G}_{i\ell}(0) \mathbf{D}^{\ell} \times (0) = \mathbf{D}^{i} a(0); i = 0,1,...,k-1;$$
where

(14.3)
$$\Gamma_{\ell}(t) = A_{\ell}(t) - \sum_{n=0}^{m-\ell-1} {n+\ell \choose \ell} \sum_{j=0}^{m-\ell-n-1} A_{\ell+n+j+1}(t) \times D^{n}D^{j,0}B(t,t); \quad \ell = 0, 1, ..., k;$$

(14.4)
$$q(t) = \sum_{i=0}^{\infty} A_i(t) D^i a(t); t \ge 0$$
,

(14.5)
$$G_{i\ell}(t) = \sum_{j=0}^{i-\ell-1} (i-j-1) D^{i-j-\ell-1} D^{j,0} B(t,t), t \ge 0;$$

$$l = 0, 1, ..., i-1; i = 0, 1, ..., \Re;$$
and where we set $\sum_{j=0}^{i} ... = 0$ whenever $p < 0$.

 $\underline{\text{Proof.}}$ We prove the assertion (i). Let us introduce the matrix functions

$$\widetilde{X} = \begin{bmatrix} x \\ \dot{x} \\ \vdots \\ x^{(3e-1)} \end{bmatrix}$$
, $\widetilde{A} = \begin{bmatrix} 0 & I & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ & \dots & \dots & \dots & \dots \\ -A_o & -A_1 & -A_2 & \dots & -A_{5e-1} \end{bmatrix}$.

Clearly $\tilde{A} \in C_{kn \times km}^{(0)}(R_+)$ and $\times \in C_{n}^{(k)}(R_+)$ satisfies the equation (14.1) if and only if $\tilde{X} \in C_{km}^{(1)}(R_+)$ and \tilde{X} is the solution

$$\dot{\tilde{x}} = \tilde{\mathcal{A}}(t) \tilde{x}$$
.

If $\widetilde{\mathcal{H}}$ is the fundamental matrix of the last equation, then its solution $\widetilde{\mathbf{x}}$ may be written in the form

$$\widetilde{x}(t) = \widetilde{H}(t)\widetilde{x}(0), t \ge 0$$
.

Setting

$$\widetilde{H} = \begin{bmatrix} H_0 \\ H_1 \end{bmatrix}$$

where the sub-matrix $H_0 \in \mathcal{C}_{m \times hen}^{(4)}$ (R_+), we get for the solution \times of the equation (14.0)

$$x(t) = H_0(t)\tilde{x}(0), \quad t \ge 0.$$

Using this and the assumptions of the theorem we obtain

$$B(t,s) = H_0(t)\widetilde{H}(s)^{-1} \begin{bmatrix} B(s,s) \\ D^{1,0}B(s,s) \\ \vdots \\ D^{bs-1,0}B(s,s) \end{bmatrix}, t \ge s \ge 0$$

so that B is degenerate and the assertion (i) holds.

Now we shall consider (ii). From (14.3) it follows $F_{\mathbf{k}} = A_{\mathbf{k}} = 1$. The values $\mathbf{x}(0)$, $\mathbf{D}\mathbf{x}(0)$,..., $\mathbf{D}^{\mathbf{k}-1}\mathbf{x}(0)$ are uniquely defined by (14.2). It is possible to transform the equation (14.1) into the first order differential equation as we transformed the equation (14.0) above. Hence and from Theorem 3 it follows that the initial value problem (14.1-2) is uniquely solvable in $C_{\mathbf{m}}^{(\mathbf{k})}(\mathbf{R}_{+})$.

Let x be the solution of the equation (I). Let us express the derivatives $\mathbf{p}^{\mathbf{i}}x$ in the form

(14.6)
$$\mathcal{D}^{i}x(t) = \mathcal{D}^{i}a(t) + \sigma^{i}x(t) + \int_{a}^{t} \mathcal{D}^{i,0}B(t,s)x(s)ds;$$

i = 0, 1, ..., k. Differentiating the boths sides of the equation (I) and using (14.5-6) we obtain

$$(14.7) \quad \delta^{i}_{x}(t) = \sum_{j=0}^{i-1} D^{i-j-1} [(D^{j,0}B(t,t))_{x}(t)] =$$

$$= \sum_{\ell=0}^{i-1} G_{i\ell}(t) D^{\ell}_{x}(t) ; \quad t \ge 0 ; \quad i = 0,1,..., \text{ for } ;$$

$$(14.8) \quad \sum_{i=0}^{4n} A_{i}(t) \sigma^{i} x(t) = \sum_{i=0}^{4n} A_{i}(t) \sum_{\ell=0}^{i-1} G_{i\ell}(t) D^{\ell} x(t) =$$

$$= \sum_{\ell=0}^{\infty} \left[A_{\ell}(t) - F_{\ell}(t) \right] D^{\ell} \times (t) , \quad x \ge 0 .$$

One has

$$\begin{split} \sum_{i=0}^{\infty} A_{i}(t) D^{i} x(t) &= \sum_{i=0}^{\infty} A_{i}(t) D^{i} a(t) + \sum_{i=0}^{\infty} A_{i}(t) \sigma^{i} x(t) + \\ &+ \int_{0}^{t} \sum_{i=0}^{\infty} A_{i}(t) D^{i,0} B(t,s) x(s) ds, \quad t \geq 0 \end{split}$$

Since B(., b) is the solution of (14.1), the last term equals zero. Hence using (14.8), we obtain (14.1), where F_{ℓ} , Q are defined by means of (14.3-4) respectively. Putting t = 0 in (14.6) and using (14.7) we obtain the initial conditions (14.2).

Conversely, since the solution of the initial value problem (14.1-2) is unique and the solution of (I) exists, it follows from the above argument that the solution of the initial value problem (14.1-2) solves (I).

Acknowledgement. The author would like to thank J. Nagy for several helpful discussions and suggestions.

References

- [1] R.K. MILLER: Nonlinear Volterra Integral Equations, W.A. Benjamin, Inc., Menlo Park, California, 1971.
- [2] J. NAGY, E. NOVÁKOVÁ: Concerning Resolvent Kernels of Volterra Integral Equations, Comment.Math. Univ.Carolinae 12(1971),737-752.
- [3] E. NOVÁKOVÁ: Malé perturbace Volterrových integrálních rovnic, Tribuna mladých matematiků, JČMF, Praha 1972.

Katedra matematiky
Elektrotechnické fakulty ČVUT
Suchbátarova 2, Praha 6
Československo

(Oblatum 5.4.1972)