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APPROXIMATION BY HILL FUNCTIONS II
Ivo BABUSKA, College Park

1. Introduction. The problem of the approximation in
Sobolev spaces by piecewise smooth function plays a very
important role in applications today. In [1] [see also (8]]
we studied this problem for a special class of approxima-
ting functions. [2] deals with a related problem. [3] stu-
dies the problems very similar to those in [1]. There are
other significﬁnt results in this field, see e.g.[4],15],
and [6] and others. ‘

Another approach to the approximation problems by pie-
cewise smooth functions is in (7).

* Problems of the mentioned type play very important ro-
les in the finite element method. See e.g. [8] - [15] and
others.

This paper deals with the problems of approximation
on less dimensional manifolds and simultaneous approxima-
tion on manifolds of different dimensions.

These queegione are important in the application, in

finite element methods. etc.

AMS, Primary 41A63, 41A65 Ref. 2.7.518.827,
Secondary - 7.978.8



2. Some Notions. Through the entire paper R, be the
m -dimensional Euclidean space, X ®m (X,,..., X, ),
Ixt? = 4% x",; and dx = dx ... dx, .
Further let
R:‘ = Elxyx, >01 ,
R,= ELx; x, <01 .
Let 22 ¢ R, be a bounded region and Q' its boundary.
We assume that f° is an (m -1)-dimensional manifold.
Mostly we will asume that JfL° is infinitely times diffe-
rentiable and we write in this case Q' e C% .
For b >0 let QY =ELxe fl yd(x, ) < 4] and
Dy =Elxe fl; dix, Q) >8],
where o (x, £)°) means the distance from X to Q0 .

Let Lz(.Q.) (resp. L,‘_(Km) ) be the space of square in-
tegrable functions & on £ (resp. R,) such that

2 2
l,wl!hz“n = './n'I“l dx < © .

Analogously we define Lz(R») . Sometimes we shall write
L,_Cﬂ)s'W:(ﬂ) (resp. LQCK,,J-W:_(R,,? ).

Let £€(IL) (resp. € (R, ) ) be the space of all
infinite times differentisble functions on IL (reep.R, )
and such that all derivatives are continuously prolongable
on Q .,

Furthermore let D () c¢ €(XL) (resp. D(R,) ) be the
subspace of all functions with compact support in Sl (resp.
K,n, ). Let £ be an integer .£ = 4 , The Sobolev space

W (Q) (reep. W:(R“) ) will be the closure of € (IL)

(resp. D (R, ) ) in the norm fef (resp.

L
wt oy



) -where

bell
wrcr,)

2 « 42
M hyecay = o Foiee "2 41, cay

where
944 oo b OCpn

D* 2 o = (0, ,..., 0, )
Pl 1400s B ¥

mn
«, =20, i=4,.,m, lcl =, & oc;

(Quite analogously we define fl« |l wi (R, .)

Let 1?!:(.0.) c W: () be the closure of (L)
(resp. D(R,) ). Let £e€ €(XL) , then £° be a function
defined on £)1* such that for x € Q° we have £°(x) = £(x).
Later we shall also use this notation if fe W‘:_ () and
£° may be defined on Q° in a sense of traces.

Let now L' € C® and let ¥, € D(R,), ¥;(x) =0,
o= 4,0.,» be a system of functions such that
-2‘:. yv; =1 on ' .

Further let there be a system of local coordinates .x?’ s

Yad,.,m, H=4,,.,% and (m-1)-dinensional do-
mains J, € R, , J, € C® and functions g, defined on
Jp such that there is one to one infinitely times diffe-

s s o
rentiable mapping %, ©of J, such that g, (J,) = .ﬂ.h
where

10] (23] [£)] [») (23]
O wE L, X @, Xy (A, X € 3,0

and so that

Elxe Q' ; y,(x)>0]c
© E LG, X, @, X 005 (X, e ) 6 (9,0, 1
with H >0 .

It is easy to see that such a system of functions
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¥;, ¥; and domains J; really exists.
Let £ be defined on f1° ., Then the functionf =+, f = 0
everywhere outside of £ .
Therefore the function £, (7, (x)) is defined on J,
and has compact support.

Let us introduce the Sobolev space on JS)° , Let £ be
an integer £ = (0 . The Sobolev space W: (£*) with the

norm Ko Iw[, is the space of all functions £ defi-
’ @

L°)
ned on f)* and asuch that

>
2 1
llillw:cu,) -bﬁlli.lwag(a‘) < o0 .

We defined the Sobolev space W: (N*) for £ 20, £ in-
tegral. For £ negative, £ integral we shall define the
space as a dual one, namely for £ = 0

WAoo = (wheat)y .
More about that see [1%¥]), p.35.

We have introduced the Sobolev spaces with integral de-

rivatives. It is possible to show that tne norm '.IW‘(R )
a'm

may be introduced in terms of Fourier transform also (up to
equivalency). For £ with Q' e C* L[and R, 1 we may
construct Hilbert scales and get spaces with fractional de-
rivatives. See [1¥] and [18].

The norms of these interpolated spaces W:‘ ) ,
W:" (2, W: (R, are equivalent with Aronszajn-Slobo-
detskij norm. See e.g.[18]. E.g. for 0 « o = [oc] + ¢,
0< §<41 and [] lintegral we may define

2.1) 2 2 ) A 2
( Ilblw:(m = “anamtn) + 1&:;3 D leg(n)

where



2 (w(t) - w(e)?
(2.2) hal = dt dv .
oy {{ “GameIE
Analogously to (2.1) and (2.2) we may define the norm

Nel which is equivalent with the interpolated norm.

w:(.n.')
By interpolation we may define also W:(Q), 0 €
for « non-integral. We have to underline here that for
« = integer + -1- the space \.V: Q) , obtained by in-
terpolation for o¢ integral is not an equivalent one with
the closure of QD( L) in the norm (2.1). More about that
see [1%].

Let us state now a lemma.

Lemma 2.1. Let £, 4 be real,lLl & L,Ikl€L, L<ow.
Then there exist operators Ah.' D M < 4 which map
W) into W*(Q')  eo that ¥

(2.3) VApfhyncg, & CHEbyp g W°

where

(2.4) « =minl0, L-A]

and for & = L

(2.5)  NE=~A 0 neo,, & CHER L o IO
)

and C does not depend on #» and £ (may depend on I,
and .Q. )o
Proof. Because of our definition of W: () with

£, (q_,. (x)) having compact support in Jp , it is enough

to show the existence of such an operator which maps

1) Through the paper C is a generic constant with diffe-
rent values on different places.
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W:'(R“,q) into W’:’(Rm_,,) , which has the proper-
ties (2.3) - (2.5) and furthermore is such that if £ has
compact support S, then A, f has a support s -
where
SP cElxeR,, ;d(x,5) & Ah)

and d(x,5) is the distance of x to & and A does not
depend on 4 and £ .,

Using the technique of Fourier transform such an ope-
rator may be easily constructed.
The operator has a form of a convolution and its properties
may be checked up the same way as in Part 1 of the proof
of the theorem 4.1 in [1].

A notion which plays a basic role is a (t, ft)-regular
system ’l;:""(ﬂm),'here D= hh<41,t =4l 20.

A one parametric system of functions ¢ € %’:"" (R,)
defined for every 0 < fo < 1 is called a (t, A )-regu-
lar system (t = S 2 0) if and only if

Y 3
(1) IR (R, € W (R,

)
(2) if f e W: (Rp) then there exists g €
e '3;:"'(3”) such that for any 0 € » = fo £ £

-~
(2.6) Iq,-fﬂw:(&w) € Ch nfuwﬂl(xﬂ‘)
where

e =min(l~n,t-n)
and C does not depend on b, /4 and f .

(3) If £ e W: (R, ) has compact support S5  then 9
in (2.6) has compact support S("") 5



SM™oaBlxeR, ; d(x,8)& AM]

where J does not depend on fp and £ (depends only on
S, 2).

The notion of (t, &)-regular system ’D‘J""CRM) is a
generalization of the system of the hill functions intro-
duced in [11.

In [1] we defined the asystem ’D‘:_" (1,») as the totality

of all the functions of the form
S T oolpdday (L on)
(2.7) 5}1 =ec Mgl (-1

where f = (f1 ,...,4v,), N, integral and c(x) e W:’(RM_)
are fixed functions with compact support.
In [1] we have studied sufficient conditions for

ca?' (x) such that the system (2.6) be(t 5 #)-regular.

3. Approximation by Hill Functions on ) gnd 0)°.
We studied in [1] the approximation problems by Hill func-
tions in the case that L = R, .

In this § we shall study the case if Sl is a bounded
domain and Q" € C%* ,

First let us state a theorem about approximation on Q .

Theorem 3.1. Let f& WA(Q), £ 20 and let 0 «
€ 5 £ L, 0°6eC% . Then for b = » there exists

ge 7;:""( R,) such that

(3.1). Nhg - £1 € Ch™rs1

9 W2 () Wiy
where
(3.2) @w=mn(L-p,t-p)

-7~



and C does not depend on h and f .

Proof. The proof follows immediately by the application
of the well known continuation theorem. See e.g. [1%]1. By
this theorem there exists a function F e W: (1@) such

that P=£ on £ and IFI < CI£I where C

whcr,,) wica)

does not depend on £ .

Using the basic property of (t ~ M) -regularity there exists
9 e 7":""( Ra) such that

€ Ch*IFI .

-~
dg-~Fll WE Ry € Ch lilwf )
By restriction to L we obtain our theorem.

Remark. Everywhere we assume that Q' & C® .

Because the continuation theorem%is valid for Lipschitz do-

w2er,)

main theorem 3.1 holds in the general case when () is a
Lipschitz domain.

The theorem 3.1 solves the problem of the approximation
on £ .Let us prove a thoormp dealing with the approxima-
tion on the boundary Q° .

Theorem 3.2. Let f:W:(ﬂ.') s £ >0 andlet 0 <

p .

‘< p & £ ., Then for t zbc»-z—,hz‘a‘r% there exists

qe .7::"'( R, ) such that

§ -q° & “ren
where
(3.4) : "a.-aru'm(l.—/b,t-b-%)

and C doss not depend on b and £ .
Proof., Using the "inverse" embedding theorem (see
e.g. [1%] or [20]) there exists F ¢ W:’i (R,) such
-8 - ’



that F’ = £ and

IFi £ Cl£1

4 V) L
whei v, whcan
where C does not depend on £ . Therefore there exists

g€ r,f"'cnn ) euch that
“
IP-glyseicry € CATNFlyteg e, <
P72
« Ch*1£0ye o,
and
@ mmin(Lar,t-h=TF.

Applying the embedding theorem we have

“
S CIF-glugc, < CH1LD

wt o)
and the theorem is conpletelyi proved.

Remarks. (1) Obviously we do not need N’ € C* , but
we need that f)° be sufficiently smooth.

(2) Comparing Theorem 3.1 and Theorem 3.2, especially
1

the expressions (3.2) and (3.4), we see that we lost T

in the second term and we need in Theorem 3.2 larger regu-
“larity functions than in Theorem 3.1. .

So far it is not clear whether this situation occurs
because of the way we prove it or whether this is necéssary
for the theorem itself. The first term in (3.2) and (3.4)
is an optimal one. It follows in general by applying the
theory of fhe m-width or in special case by Theorem 4.2
in [13.

(3) In Theorem 3.2 we did assume that £ > 0 and
4o > 0, In Theorem 3.1 we assumed L =2 0. » 2 0. The

-9 -



assumption £ > 0 , A > 0 stems from using the embed-
ding theorem.

This theorem does not hold for £ =0 or o= 0 (see e.g.
Theorem 9.5 [1¥]). Perhaps the theorem holds for 4 = 0
(resp. A = 0 .).

4. Simultaneous Approximation on fl and f1° . Using
the results of the § 3 we may approximate the functions
feWlcn) (resp. £ e WE(Q') ) bygeBitr,)
(reap. g,' )e

In applications another pxjoblem plays an important ro-
le. It is the problem of simultanenus approximation on £L
and ° .

Let us introduce the space W:'”(.ﬂ.) c W: () with

the norm

1£13 - llfllt,:

oy

(& }) W™
Obviously using the embedding theorem we see that for m &

6&-% we have €1l € CHell and

whm ) wi (o)
henca W™ (2) = WicQ) .

Ifm’.t—% then the space W:’"(.ﬂ.) is smaller
than the space "l’:’ Q) .

The problem of the simultaneous approximation with a
weight ® is the problem to find @ such that for every
fe W:""‘(.n.) there exists g e T,f'“cn“) such that

=Ty pe o [ od
V=gl (o * 5 THE -G sy gy & CH™ 1Ny pm s,

and C does not depend on £ and h ., *

=10 -



The most important case in applications is the case of
>0 .

As introduction let us prove a theorem which was in
fact proved in [13].

Theorem 4.1. Let £ cW:(.ﬂ.) , £ Z 1 . Then for
mzi,tzd cmavst-d-¢,cc2-3-¢, e>0

arbitrary, there exists € 7% (R ) such that
9’ P m

41) WE=ghy, o + A NE-gl &
2

PRI ¥ lw:

0
W an

Q)
where

(4.2) @ =min (L-At-A,L-3-E-2,t-4-€-2)
and C does not depend on £ and / (generally depends
on € ). .

Proof. Obviously, £ € W:"'I (L) . There exists
Qe 7;:"" (R, ) such that (see Theorem 3.1)

o~
lq-flw:m’ & Ch lf'w{(n)

and
Using b= 4 and hum i+ , £>0 and the imbedding

2
theorem we get

» -e '] .
& CLa™ 4+ %022 WAyt q)
where

Wy = min (L-4,t=1) ,

-11 -



@y min(L-5-€,¢-4-€).

Theorem 4.1 will not change if instead fe Wzt () we
have f € W:’”(.ﬂ.) with m > £~ -1- ¥

Intuitively it is possible to see that perhaps the re-
sult is too reatrictive because of simplicity of the proof.
Let us show that we may really get much better results.

Theorem 4.2. let fe WE(QA), LZ0 20, £,
A integral. Then for fe =, t 2 b there exists

g€ 7}:""(1{,“) such that ¢’ = 0 and such that

Ve =g lys oy C"'““"w:cm
where
“w = min(L-H,t-n»).

Proof.(1) Let @(x), x € QL be the distance of the
point X to the boundary £)° . Because Q' € C® the func-
tion @(x) has all derivatives in the neighborhood of Q°.
Let qr(x),xs]{,‘, 0 £ x be a function with all de-
rivatives and such that

Y(x)m 4 for D =x £ 4 |,
Y(x) =0 for x =2 .

Such a function obviously exists. Let further denote
%, (x) = q'(%‘;) and let @ (x) = 4, (@(x)) . The func-
tion @, (x) is defined on Q) and g;(.x) =41 on L ,

and (x)=0 on Q, . .
Further for sufficiently small b the function g hes all
derivatives and $D‘¢bl' € ﬁm c .

(2) Let £ € WE(Q) . Denote £, = £ @p(x).

-12 -



. Let us show that for Lz 20, “h'w:(.n.) & c},f"'flw:(‘m.
Because Q' e C% , using partition (;f unity and local trans-
formation of ' to a plane, we may restrict ourselves to
proving the following special estimate.

lLet £ e c”(km),bfgo on R} and let £ have compact
support.
Let @ (x) =1y (x) end £, = £q@, .
Let us show that for L =2 » 2 0

£2-4

(4.3) g bypcay € CH77 0ENL ey
2

In fact because %(.x)- 0 for .xné 2, we have
£,(X)= 0 for x, =2 24 .
On the other hand we have

g (x) ¢

2 , | & —on
Ox* ... Ax’*m on

1 n
Therefore to prove (4.3) it is sufficient to show that

3*{ % £ (x) 2 j'v S E(x) 2
o L oxy ... Oxim ] &, = [0 X } Ay, &

X1 Ox, ™
- Ch’“"’fm[ 8% £ (x) ]a il )
m

- a«:" oo ax:""
. - /
Writing ?(-\) = Ea;Tim we haveai-ﬁ?’q - gﬁ- .

Obviously we have @ = 0 identically on R, .

Therefore we may write

1 by ot
(x)= sy %
¥ x ‘l-‘-‘” —J:ﬂ(&” t)‘- 0«0- ("40“'7“‘..1 ,t ldt .

Using now the Hardy inequality (see Theorem 3.29 of [21] we
set

= 13 =



25 26 LY
S 0dx, = [gHodx, « c_,Z (24 - x, )24

a4-¢

(—a—x-;.-i}—)'dx,., ) Ch“bi’_/;:“ (—g;z::_-%-)ad.x“ .
m

Therefore (4.3) is proved.
o
(3) In ’2) we proved that every function £ € W:’(_ﬂ.)
can be written in the form

£-£“’4+£

H, 2
where
", "wz’-cm € c“"w;-m.) ’
“fn,z"wfm) - c“"lv,fc.o.)
and £".a = (0 on Q,
ng, 0 < cHY I8

Ha 'wr ) Wl

and { > 0 is an arbitrary number.

Choosing H = o £ for a proper « and using the basic
property of the (t,f)-regularity we may find g e ’I":'“(R“),
g =0 on f° end
such that

lg-2 ,1I £ c»-.“nf,,’,lw:m,

H,2 "W2 ()
where
= min(L-p,t-H) .
Therefore we get

hg -£1 & Cn sl

W2y wica)
and the theorem is proved.
Theorem 4.2 may be easily rewritten for L, A noninte-

gral.

- 14 -



Theorem 4.3. Let £ @ V.(: (Q),Lzr = 0. Further
let »™ be the smallest integer such that »* 2 » . Then for
& 2 »* and t = »* there exists g € "“'vt’“(lm) such
that ¢ = 0 and such that

Vi-glyrg, Cais hwtca
where
@ = mim (L-n,t-n) .

The proof follows immediately from the well known in-
terpolation theorems.

Let us remark that for £ = integral + 12 the space
f[:_’ (L1) should be understood in a,pro'per way. See § 2.

Theorem 4.4. Let £ eW:(.ﬂ-) , ¥ e C'”, L4  integral

and such that gﬂ’:- =0 on Q) forjm0,4,..,n &l-1.

Then for ¢t = £ and ,o>'z+%+m,/a=pzo, =20,

© 20 1) there exists g€ '?;:"’(R“) such that
X -6+4 -
-9 e+, 25470 S5 Nz #
< CeIMm ™ HE Ny o,

where

w = ;:——:—%—(t-p), 1= rmax(qa,'t:+12-+6‘)

with € > 0 arbitrary and C (&) does not depend on b
and ¢

Proof. Let us define functions @, = 0,1,.., L-41

defined on f1° such that

1) @,6,T need not be integral.

-15 -



ot ¢ ) p
(4.12) " BmF g=0,1,..,L-1.
By assumption we have @, = @, = ... = 9, = 0 .
Let « & Wfco) be such that
L i .

L =0, ¥ " % #=0,1,..,4-1.
For the existence of such a function see e.g. [171].

Obviously the function &4 may be written in a form of

a sum namely

A1
(4.13) ‘ “ -4.2".” “y
where
A“.«..4 = 0
and
—aa—::i.i—- -Q‘.‘l’é,‘ y e+ i,.,£-1,
4=0,1,..., £-1

with

a&;-/l for 4 = 4 ,
=0 for 44 4 .

Because of the embedding theorem we have

Further using the basic theorem about the regularity of the
solution (see [1%), p.203) we obtain -

for arbitrary » .

- 16 -



% .0 - ’
Let us remark that %;:"—;7— =0 on Q' for 4 =

=0,4y0yn and 4 = £ + 4,0, £ =1 .

In § 2 we introduced the operator A“ . Let us denote
and let 4.4.4’“ be an analogous function to the function
“y applying Q;,“ instead @ ; . Using Lemma 2.1 and

(4.15) for ¢ = ,9_1',--1- we get

. 4 -
t-("'.l) »
(4.17) '“'4"42,u“w:an &« CH Lq; 'w: Q)

and fort & -4 ~ % we obtain

(4.18) 1 0 P P |
187 Daey y hwpcay % wfcan o

Using (4.14) we obtain for £ 2 @

ti-i-G-i-p)
(4.29) Nawg - sy II,,,?m, < CH '“w,ftm =

For 9 2 L we obtain

-(p-2)

(4200 Bay ll“_,",,(‘m & CH l!lw‘zm, .

Hence for P £ y

42D Nioe & a1 & c'Taen
daxar TGN WEcy T wieay -

. L1 o,
Denoting o w i - & 4. then we have A
g i omt = °

on -Q. for é = o’ 4,,.., 1, .

It is easy to see that £ - lﬂ;“(-ﬂ.) .

We may write

-17 -



2-4
(4.22) f = foll +0r +"§:‘u‘.,“ .

There exist g e 9::"()\”),/: Z @ such that for

z 24

-(x-L) 5 &4

where
8%y . ;
Because ——X2"_ 5 0 on ' for 3 =0,..., £ ,we have
"
L d
forb>1:+4.+%_, #=0,0,1
7, . -x-L) %
) O%¢i < W isl
(4.24) || Bng "wfcn.) CH We ca)

where

(4.25) oe-nm'n(z-e‘—-z--g.,t-c-%-a'-)-c ’

¢ > 0 arbitrary.
Let us take now x =t 2 £ (Remark that we did
not fix the value of 2 .)

Under this assumption we have

L1 21
4.26) N Zqy- F u;, lypeny €

€ CH O Omb 1 £0, 20,
and for b,:g.o-z + é

5% L4
(4.27) | ) ‘E ¥ '%’c:ﬂ ]
& CH™-8) gt-v-F-3-s Nyt o, £€>0.
Using the theorem 4.2 we may find q, & %™A(R ) such that

- 18 =



%-O in.Q."v and

(4.28) Ngy - (£ = u)llyPeay

£ CHYP 14 0y2cq
and obviously

a" .
(4-29) " —an%:!—lw;'(a) = 0 ) ? - 0,-:., x .

Further using (4.21) we have

L-p
(4.30) lnrlw:(m &« CH llfllw:“m

and a‘
—;;’V;_- o, 4- o,v-a,‘r ]
Let us take H = % . Then
H-u-v h"" - h-q'.u-‘ht-p - hgm-x)-uut-w

Therefore denoting
L1
9’ -45*4 ?4 + 9’0

we have

[ ¢
(4.31) "?- fl‘w‘f‘m +4§°‘V‘*‘ Il Ta“%- 'w‘f‘a., -
“ -8

where
(4.32) @ =minlae(l-p),tll-x)+xl-p,
t(4=-) +¢L-e—%'- 61, £>0 arbitrary.

Denoting

(4.33) 1-m(p,¢+4+6')

2

-19 -



we get by optimal choice of ec

Theorem 4.4 assumes that L has a smooth boundary.
It is not clear whether the theorem holds for domains which
are not sufficiently smooth. Certainly we do not ;-ueed
N’'e C® but a sufficient smoothness of the boundary is
necessary for the proof.

Different situation occurs in Theorem 4.2 where the
assumption about smoothness of £l° wmay be much weaker.

In Theorem 4.4 we have assumed that -a—fT- =0 on 0,
m

Combining the results of Theorem 4.4 with the results of

§ 3 we obviously obtain the general case.
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OB OHOM YCJAOBMM XECTKOCTM 2-ro ITOPSUIKA ABYCBASHOR
MOBEPXHOCTM BPAIUEHMA

H.l'. NEPAOBA, PocrTop-ma-loRy

PacCMOTPNM ABYCBASHYD MOBEPXHOCTh BPHMEHNS

S:Rmu+rlw)a(v)

1
T % 0 ,orpusnvennyp nupuzxexsux 4 =0 x u = a .

, rae 2 = xlu)e CY |

Cnpuse)uusa.

Teopemu. NMosepxnocTs S 06xuAueT XECTKOCTHD 2-ro NO-
PAAK4 OTHOCMTOXbHO OECKOHEUHO MUXHX MSrnSunmlt, cOXpuaHAEENX
HOPM4ABRYD KPNBNSHNY OAHOR N3 ee rpuRNUENX napuaxxexef.

JdomusureabcrBo. Becxomewno smuxoe xsrmamxe l-ro nopsza-
x4 nosepxnocT® S , He NOAUNHEHNHOE TDUHNUHMM yCXOBMIM,

onpeneaserca BexKTOPHuM noxes [1]

- - /
“zs(w,qr) - (w,)® +a)(u,1r)a. () + % (w, )3 (2)

xtacca (¢ , YAOBXETBOPSDUNM CNCTeMe ypuBHeHuk

%w"' m,enw - o 1

(1)
B * Ty =0,
‘ -
Fot ® Bw- G+ 2w =0 .
AMS, Primary 53405 Ref. 2. 3.934.14



BecxoHeuHO Muxoe M8rubuHNEe Z2-I'0 NOPSAKH MOBEPXHOCTR
) » He MOAYMHEHHOE TPUENUHHM ycjoalau, onpexexsercs Bex-

TopENM noaem [1]
g)(w,v) - (u.,v)!'+‘/23’ (w, )T (v) +(Z; (e, ) B (1)

xasccus (€2’ , YAOBXETBOPSDmAM CHCTeMe ypuBHenxi

1. 2 2 2
[- g’,w"”"/})w-—?_[a‘;u*'(%u"'g‘;w 1,

4 2 2
J . (Bo=-7T)
Sl I Sl vl T S S

[
n( - )+
o Br-§ &« =
[ =L G+ fe B —F]
IlepBus W BTOPUR BUPK&UXN HOPMUXABHOR KPDMBNSHN ANHHN

M = corat HB DOBEPXROCTN onpejexsmrcs Qopmyzumm [2]

2
J'*h - JGN ’ Jz‘*’np - JGN ?

rne G x N cyr xoef¢unuentn nepeolt x BTopoft ccEOBHNX
dopM DOBEPXHOCTK.
Hulknes supuxense xospdmuuenrta N* Bropolt ocHoBHOR

dopun nosepxHocT™® ¥ = X + £ % +etx

@
(3) N* = !
VEG - F T
41-5%“4-@"&:’“ "+ eBu+ e’/g’.,, 3%“ + E‘a;'..,
2 2 a2
xleg, +e e, e(Bo-7)+¢ (g,v—g) n.+e.(g",+g’)
1 - - - - - -
it Eier Mty 3;,»&({{),, 2B By g;)*é(‘zwu‘@v 7

oTXyAY
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1 /
IN = W [fb (n g;vv + ﬁrg;w)"”r(g’vv'a:v)]-

e (1) caeayer:

/
= ( e )= no
(°"1,4r1r m=r g,vv (‘133 v e ’

[« -—I{,’ﬂw-/ﬁl'f“v

e N 73}
MoeToMy
-Vien? R T/ P L +B ).
SNum-Vian (g)w g’), = ‘@7 vt
Noxpsyschr nmepuoANuHOCTbD QyRKuuk o It) ¥ ,npexm-

~

1) 7 ) ’(4)
CT4BNM NX B BMAe psixoB dypre:
("

+ o0 o .
& (w,v)= 3L %h-(u>e*”’+g, (w)e**1

+2 ihv. — -iler
(4) g’ (u.,v)-“_gotxh(u-)e" +a§.,(u.)e" 1,

3 ik, = ~ikv
b g;(u,v)sbgof.gi R (u)e +J) a(w)e 1,

rae ¢pymxoEm @ . , T P & JAOBI@TBODADT CMCTEME ypuB-
“@ -
uennkt [1]

/ 4 ]
‘7;.&“,%,,-0 .

(5) ik = 0
g\u*(’gu ’

14 + K (1 Je - Y+n g 0
& " PR AL I T
npx murypaxbHoM fv = 2 ; NCKADYeHNe HewsBecTHEX Qymxuui

Pn XY o ue (4) OPHBOANT X YPUBHEHNR
(4} o

(8) J 2_1)n" = (
m&,,,-b(ko )MJ‘.& 0 o 22)
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Axs oxHolk HemsBecTHoR Qymxumm ? g » ©C TOMOmBD xoTopok
o)

HuxongTca 6e3 KBaADUTYD.
grv "4

B cuxy (4,) ycaosme di = 0 npuENMueT BN

M /i = conat
'S (RPN Ly g () SR () Hvy » 0
} Y] (—4,‘ ) b uw const ’

OTEYAu B chuay xunelisot HesuBmcumocTm ¢ymxomit e‘““"’ noay-

qyaes:

v‘v(u)/w_w=0 (b = 2)
(3]

(opx S =0 4 , (W)= 0 [1]) wam, uTo TO x=e,
“?

%o () ) eoat = O (o z2) .
@l

MpeancxoxxM, uTo nosepxsocTs S  ZXonyckueT GeCKOHEUHO
Muxoe usrufaHNe l-ro nopsAxa ¢ COXpuHeHNeM HOpMaxbHOR Kpu-
BNBHN o6exx rpaHmuENx napuxzexelf. Toraa cymecTByer pemeHxe
ypasHenns (6) npm oAHOM MaM meckoxbxux S 2= 2 yAoBIeTBO-
panumee ycXoBKaM
(?7) Q“CO)-%h(m)-O.

“) “n
3uMeTNM, YTO NOBEPXHOCTE S B 8TOM CAyuH4e HEBNNIyKAuf: eC-

an n” < 0 , TO pemeHNe ypuBHEHNS

“",.+ (st 1) %‘1&, w =0

He MOXeT NMeTh Ooxee OXHOrO HyAR B uuTepBuxe [ O,a.J . Ecam
xe 1> 0 , TO eCTh NOBEPXHOCTH S CTPOro HEBENYKIad,

To Hu Hel cymecTByeT CUETHO® MHOXECTBO NupuXXeXef i = a,

TUKNX, QTO BNINOAHADTCR YCIOBRA
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X 2 (0) = % g (ay) = 0
) “?r

LekcreuTeapno, npx x” > (  puccTosENE MeXAy AByMs mocxe-

HOBUTEXBENMN HYASMM DemeHMs yPHBHEeHMS (6) menbme

o
Vemim (ie®- 1) &=

mMx HexoToporo A¢, , OHO MeEpme Q .

[3] x, cxemoBuTeabHQ, npx Bcex Jfo , 6oxp-

P4CCNMOTDNM NPOJOXAXEHNE 2-ro NOPKAK4 GECKOHEYHO MUXOTO
KSTNOUHNS X, + rae cyMMmpoBa-
& %u)“’ &K+ T & s
EMe BeAeTcH NO TeM BHuUeHNAM Se = 2 , IXS KOTOPHX BHNOX- -
Hserca ycaosxe (7).

e (3), yunruBas (7 ), naltnem:

2
J N,“.a W[Hf(m&vv+bz ‘Vﬂf-g'v)-"
+2m(r{’ )+~%V”£)“-m%"<3;“+

* x K o "'(;T,o]lw.o

Tax xax us (2) caeamyer:

)=-n +0C, X +
"'((i"v & %wv Gur Gr* e Tvv

+ ( -7)+ ( - )]
g}“" {43" 3; 5’“ c@) o vl
1 2
g-'"" T“' 1[«1 g) +"f“,]+ {m Hr Hur +

2
+2(c4)"'3§ e{xs)“""f wld- "'Ew"*(g)"'c%) 1}

- i [ G 4 e
208, v &’ *[3%”"* & & 1o

- 27 =



TO

Ja‘“/u.-o-- M""”n{@,w"'@‘%[ Eg_;huv"'g'ntu-v]z +

}

1 A2
+b[§a;~“+$1w]n+zcolb}/“.o ’
= 1] .
rae C,n %o (1]

NMpeznoxoxau, uro d2 S, = 0. Torau

/u-o
(8) I Nfpp =0 .
B cray auHeltHoli nesusmcmmocTN QymEmmit e’“’" AOCXXHE paB-

HATHCA HYAD KOOPPMUNEeHTH OpPM HuX B xeBolt YucTN puBeECTBa

(8),» Tom uncne xoedpuumenr npx & :

-V4+J‘{-%[%!&.l"k’+lgvl"+%C’;n,"J..

“nL Sy Pl 121+ 20 LSy P41y 12]+
" ~(})“l T w “5’)“' &1

+.;_.c:~,} = e W% S gt = 0

“)
CaxeRoBuTEABHO, B ODPeANOAONEHNN HEXeCTKOCTN 2-ro NOpPSKAK& NO-
sepxHocT® S npx YCAOBNN COXPUHEHNS HOPMuXbHOR KPUBHSHE
oAsolf Toapxo rpuaEwuBolt nepazzeax i = 0 noxygueM:
’
1.,(0)-0 (R z2),
)
Tux X4K ypuBHEHENE

"l

L't (W=D gy =0
“h “)
npN ycAOBMSX # o (0) = 0, 7(" &0 =0 xMeer
) “

TOAbKO HyZeBoe pemesxe B xHrTepBuxe [0, a ] , TO

X (4) =0 (o =2)

@ i



u moromy B cuxy (5)

P () =0, y(u)=10 (o z2) .
1 “
3ro ganauuor, uTO noxe g’ (w,v) TPMBMUXbHO Ha Bcelt

nosepxHocTx S , UYTO DPOTNBOPEUNT NPEAXOXEHMD O HeXeCTKoC-

™M 2-r0 nopsaAka. Teopema HOKuUBHHE.
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