

Werk

Label: Article Jahr: 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0013|log57

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae

FIXED POINT THEOREMS FOR GENERALIZED CONTRACTIONS

Jochen REINERMANN, Aschen

W.V. Petryshyn has given in [7] some fixed point theorems on so called [3],[4] "generalized contractions" (Def. 1 (i)) and on "uniformly generalized contractions" (Def. 1 (ii)) proving them by a degree argument (and therefore function's domains must have interior points). We strengthen and generalize some of these results by a unifying and elementary approach, using methods discussed in [3],[4],[5],[8],[9].

<u>Definition 1</u>: Let (E, || ||) be a normed linear space and $\emptyset \neq X \subset E$;

(i) $f: X \longrightarrow E$ is said to be a "generalized contraction": \iff

$$(*) \bigvee_{\alpha: X \to [0,1]} \bigwedge_{x,y \in E} (x,y) \in X \times X \Longrightarrow \|f(x) - f(y)\| \le$$

$$\le \alpha(x) \|x - y\|,$$

(ii) $f: E \longrightarrow E$ is said to be a "uniformly generalized contraction with respect to X ": $\langle \longrightarrow \rangle$

$$(**)_{\alpha: E \to E0,1} \bigwedge_{x,y \in E} (x,y) \in E \times X \Longrightarrow \|f(x) - f(y)\| \le \le \infty (x) \|x - y\|.$$

AMS, Primary: 47H10

Ref. Z. 7.978.53

Remark 1:

- 1) Contractions in the sense of Banach are generalized contractions.
- 2) [4]: Let $(E, \| \|)$ be a normed linear space and suppose $\emptyset \neq X \subset E$ is open, bounded and convex; let $f: X \longrightarrow E$ be continuously (Fréchet) differentiable. Then f is a generalized contraction iff $\| f'_X \| < 1$ for all $x \in X$. A similar example may be given satisfying condition (**), see [3].

Theorem 1: Let (E, | | | |) be a normed linear space and suppose \mathcal{Z} is a Hausdorff topology for E, such that (i) (E, \mathcal{Z}) is a topological linear space,

- (ii) $\bigwedge_{S \subset E}$ S convex $\bigwedge S \mathcal{I}$ -compact $\Longrightarrow S$ is normbounded,
- (iii) $\bigwedge_{\kappa \in E} \bigwedge_{\kappa \geq 0} B(x, \kappa) := \{y \mid y \in E \land \|x y\| \leq \kappa \} \Rightarrow B(x, \kappa)$ is Y-closed.

Let $\emptyset \neq X \subset E$ be a convex \mathcal{Z} -compact subset of E and suppose $f: X \to X$ is a generalized contraction.

Then: (a) There is a unique $x_o \in X$ such that $f(x_o) = x_o$;

(b) For $z \in X$ we have $\lim_{n \to \infty} \{f^n(z)\} = x_0$ (strongly).

Proof: (a): Let \mathcal{T} : = $\{S \mid \emptyset \neq S \subset X, S \text{ convex,} Y \text{-closed and } f(S) \subset S \}$.

We have $\mathcal{T} \neq \emptyset$ ($X \in \mathcal{T}$). Ordered by $S_1 \leq S_2 : \iff$ $\iff S_1 \supset S_2$, it can easily be seen, (9°, \leq) being inductively ordered. Let $S_o \in \mathcal{T}$ be maximal (Zorn). Defining $\delta' := diam(S_0)$ we have $0 \le \delta' < \infty$ Assume $\sigma' > 0$ and let $x \in S_0$; we define $\sigma_1 : =$ $:= \alpha(x) \delta$ and $S_1 := S_0 \cap B(f(x), \delta_1)$. We have $\emptyset + S_4 \subset X \quad (S_0 \subset X \land f(x) \in S_4)$ and S_4 is \mathcal{F} closed by (iii). Finally, we have for $z \in S_4$ $f(z) \in S_0$ and $\|f(x) - f(z)\| \le \alpha(x) \|x - z\| \le \alpha(x) \sigma \le \sigma_1$, i.e. $f(S_1) \subset S_1$: $S_1 = S_0$ (maximality of S_0). This implies $S_0 \subset B(f(x), S_1)$. Now define $S_2 :=$ $:= \bigcap_{S_0} S_0 \cap B(\gamma, S_1)$. Then $\emptyset + S_2 \subset X$ $(S_0 \subset X \land f(x) \in S_2)$, S_2 is convex and \mathcal{Z} -closed by (iii). It is easily verified that $(*)coll(S_0)$] = S_0 (\mathcal{Z} -closed convex hull) [Take $S_3 := \overline{colf(S_0)}]^2$ and prove S3 e T and $S_3 \subset S_0 J$. Now let $u \in S_2$ and $y \in S_0$.

Then $\|f(u)-f(v_0)\| \leq \|u-v_0\| \leq \sigma_1$, i.e. $f(S_0) \subset \mathbb{D}(f(u), \sigma_1)$. It follows $S_0 = \overline{c\sigma[f(S_0)]^2} \subset \mathbb{D}(f(u), \sigma_1)^2 \subset \mathbb{D}(f(u), \sigma_1)^2$

implying (by induction) $\|f^m(x) - x_0\| \le [\alpha(x_0)]^m \|x - x_0\|$ such that $\lim_{n \to \infty} \{f^m(x)\} = x_0 \quad (0 \le \alpha(x_0) < 1)$; (b) is proved. The uniqueness of x_0 is an immediate consequence of (b) or, directly of f s contraction property $(\|f(x) - f(y)\| \le \|x - y\|)$ for $x \ne y$.

Corollary 1: Let $(E, \| \| \|)$ be a normed linear space, let \mathcal{I} be a Hausdorff topology for E with (i) - (iii) of Theorem 1. Let $R \geq 0$ and suppose B(0,R) is \mathcal{I} -compact and $f: B(0,R) \longrightarrow E$ is a generalized contraction such that $\| f(x) \| \leq R$ if $\| x \| = R$ (i.e. $f(\mathcal{L}d(B(0,R))) \subset B(0,R)$).

Then: (a) There exists a unique $x_0 \in B(0,R)$ such that $f(x_0) = x_0$;

(b) For $z \in B(0, R)$ we have $\lim_{n \to \infty} \{ [\frac{1}{2} (Id + f)]^m (z) \} = x_0$ (strongly).

<u>Proof</u> (see [4]): Define $q:B(0,R) \to E$ by $q:=\frac{1}{2}(\mathrm{Id}+f)$. Then we have $q(B(0,R)) \subset B(0,R)$, q is a generalized contraction, the fixed point sets of f and q are the same. Theorem 1 completes the proof.

Remark 2:

Examples for \boldsymbol{z} :

- 1) Let (E, 11) be a conjugate space and let ${\cal T}$ be the weak* topology for E . Then (i) (iii) of Theorem 1 comes true.
- 2) Let $(E, \| \|)$ be a reflexive Banach space and let Z be the weak topology for E. Then (i) (iii) of Theorem 1 comes true.
- 3) W.A. Kirk [4] proves Theorem 1 and Corollary 1 in the

case of a conjugate space $(E, \| \|)$ and the weak * topology for E .

Theorem 2: Let $(E, \| \|)$ be a normed linear space, suppose 7 is a Hausdorff topology for E, such that

- (i) (E, 7) is a topological linear space,
- (ii) $\bigwedge_{S \subset E} S$ convex $\bigwedge_{A} S \not\subset C$ -compact $\Longrightarrow S$ is normbounded.
- (iii) $\bigwedge_{x \in E} \bigwedge_{n \ge 0} B(x, n) := \{y \mid y \in E \land \|x y\| \le n\} \Rightarrow B(x, n)$ is \mathcal{F} -closed,
- (iv) The norm topology for E $\,$ is finer than $\mbox{\em 7}$.

Let $\emptyset \neq X \subset E$ be a convex $\mathscr T$ -compact and $\mathscr T$ - (sequentially compact) subset of E, let $f: X \to E$ be a generalized contraction and $g: [X, \mathscr T] \to E$. $\| \cdot \|_{L^{2}}$ sequentially continuous such that

 (K_1) $\bigwedge_{x,y\in E} (x,y)\in X\times X \Rightarrow f(x)+g(y)\in X$.

Then f + g has a fixed point.

Proof: Let $y \in X$. We define $h_y: X \longrightarrow X$ (K_1) by $h_y(x):=f(x)+q(y)$; h_y is a generalized contraction. By Theorem 1 there is a unique $x_y \in X$ such that $h_y(x_y)=x_y$. Defining $T: X \longrightarrow X$ by $T(y):=x_y$ we have for $y, z \in X$

$$\begin{split} &\| T(y) - T(z) \| \leq \| x_y - x_z \| \leq \| h_y(x_y) - h_z(x_z) \| \leq \\ &\leq \| f(x_y) - f(x_z) + g(y) - g(z) \| \leq \| f(x_y) - f(x_z) \| + \\ &+ \| g(y) - g(z) \| \leq \alpha (x_y) \| x_y - x_z \| + \| g(y) - g(z) \| \leq \\ &\leq \alpha (x_y) \| T(y) - T(z) \| + \| g(y) - g(z) \| \end{split},$$

such that

(*)
$$\|T(y) - T(z)\| \le \frac{1}{1 - \alpha(x_y)} \|g(y) - g(z)\|$$
.

T is continuous in the norm topology: let $\{x_m\} \in X^{\mathbb{N}}$ and $x_0 \in X$ such that $x_n \to x_0$ (strongly). Then by (iv) $\gamma - \lim_{m \to \infty} \{x_m\} = x_0$. Now $g(x_m) \to g(x_0)$ and $\{T(x_m)\} \rightarrow T(x_0)$ (strongly) by (*). Let $\{T(x_n)\} \in X^N$, $\{x_n\} \in X^N$. There is a subsequence $\{x_m'\} \in X^N$ of $\{x_m\} \in X^N$ and $x_1 \in X$ such that $\gamma - \lim_{m \to \infty} \{x'_m\} = x_1$ (X is γ - (sequentially compact)). Then $q(x'_n) \rightarrow q(x_1)$ (strongly), consequently by $(*) \|T(x'_n) - T(x_1)\| \le \frac{1}{1 - \alpha(x_{x_1})} \|g(x'_n) - g(x_1)\| \to 0$, i.e. $\{T(x_n)\}$ has a (strongly) convergent subsequence. Finally χ is norm-bounded (ii) and norm-closed, because is γ -closed and γ is coarser than the norm topology. Schauder's fixed point theorem completes the proof (for let $y \in X$ such that y = T(y) then y = T(y)= = x_{ij} and $x_{ij} = h(x_{ij}) = f(x_{ij}) + g(ij)$, i.e. y = f(ij) + g(ij)+ g(y)).

Remark 3:

- 1) W.V. Petryshyn [7] proves Theorem 2 in the case of a reflexive Banach space $(E, \| \|)$ and the weak topology for E (satisfying all conditions of Theorem 2) for a subset $X \subset E$ additionally satisfying $int(X) \neq \emptyset$ (degree method).
- 2) In the case of a conjugate space (E, $\| \| \|$) and the weak* topology for E, a \mathcal{T} -compact convex subset of

E need not be \$\mathcal{T}\$ - (sequentially compact). This, however, is true, if (E, \(\)\ \(\)\ is strongly separable ([10], p.209).

Theorem 3: Let $(E, \| \|)$ be a normed linear space and suppose \mathcal{T} is a Hausdorff topology for E, such that (i) (E, \mathcal{T}) is a topological linear space,

- (ii) $\bigwedge_{S \subset E}$ S convex \bigwedge_{S} 7 -compact \Longrightarrow_{S} is norm-bounded,
- (iii) $\bigwedge_{x \in E} \bigwedge_{n \geq 0} B(x, n) := \{ y \mid y \in E \land ||x y|| \leq n \} \Rightarrow B(x, n)$ is \mathcal{F} -closed,
- (iv) The norm topology for E is finer than \mathcal{F} .

 Let $\mathbb{R} \geq 0$ and suppose $\mathbb{B}(0,\mathbb{R})$ is \mathcal{F} -compact and \mathcal{F} (sequentially compact) and \mathcal{F} : \mathbb{R} : $\mathbb{B}(0,\mathbb{R}) \longrightarrow \mathbb{E}$ is a generalized contraction, let

 $q:[X, 2] \rightarrow [E, II]$ be sequentially continuous, such that

$$(K_2) \bigwedge_{x,y\in E} \|x\| = R \wedge \|y\| \le R \Rightarrow f(x) + g(y) \in B(0,R) .$$

Then f + q has a fixed point.

Remark 4:

W.V. Petryshyn provšs Theorem 3 in [7] in the case of a reflexive Banach space and the weak topology (see Remark 2).

The method developed in [3] yields

Lemma 1: Let $(E, \| \|)$ be a reflexive Banach space and suppose X is a nonvoid, closed, bounded, convex subset of E; let $f: E \longrightarrow E$ be a uniformly generalized contraction with respect to X and $\{x_m\} \in X^{\mathbb{N}}$ such that $\lim_{n \to \infty} \{x_m - f(x_m)\} = 0$ (strongly).

Then (a) f has a unique fixed point $x_0 \in X$,

(b)
$$\lim_{m \to \infty} \{x_m\} = x_0$$
 (strongly).

Proof: See [3], proof of Theorem 2.
As a corollary of Lemma 1 we obtain

Lemma 2: Let $(E, \| \|)$ be a reflexive Banach space and suppose X is a nonvoid, closed, bounded, convex subset of E; let $f: E \longrightarrow E$ be a uniformly generalized contraction with respect to X and let $f \times_m ? \in X^N$ and $f \times E$ such that $f \times_m ? \in X^N = f \times_m ? \in X$

Then (a) There is a unique $x_1 \in X$ such that $x_1 - f(x_1) = a_1$,

(b)
$$\lim_{m \to \infty} \{x_m\} = x_1$$
.

Proof: Define $q: E \to E$ by q(x): = f(x) + q. Then q is a uniformly generalized contraction with respect to X and $\lim_{m \to \infty} \{x_m - q(x_m)\} = 0$ (strongly). Thus, by Lemma 1, there is a unique $x_1 \in X$ such that $q(x_1) = x_1$, i.e. $x_1 - f(x_1) = q$ and $\lim_{m \to \infty} \{x_m\} = x_1$ (strongly).

Theorem 4: Let (E, l, l, l) be a reflexive Banach space and suppose X is a nonvoid, closed, bounded, convex subset of E; let $f: E \longrightarrow E$ be a uniformly generalized contraction with respect to X and let $q: X \longrightarrow E$ be compact such that $(f+q_r)(X) \subset X$.

Then $f+q_r$ has a fixed point.

Proof: Without loss of generality we may assume 0 € ϵX . Let $\{\lambda_m\} \epsilon (0,1)^N$ with $\lim_{m \to \infty} \{\lambda_m\} = 1$. We define $f_n := \lambda_n f$, $g_n := \lambda_n g$ for $n \in \mathbb{N}$ and we have $(f_m + q_m)(X) \subset X$. Because of $||f_m(x) - f_m(y)|| \le$ $\leq \lambda_m \propto (x) \|x - y\| \leq \lambda_m \|x - y\|$ and q_m being compact, there is a sequence $\{x_m\} \in X^{\mathbb{N}}$ such that $f_m(x_m) +$ $+q_n(x_n) = x_n$ (see [1],[8]). Because of q's compactness there exists a subsequence $\{x_n\} \in X^N$ of $\{x_n\}$ and $y \in E$ such that $\lim_{m \to \infty} \{g(x_m')\} = y$ (strongly). Now we have for $m \in \mathbb{N}$: $x'_m - f(x'_m) - g(x'_m) =$ = $(\mathcal{A}'_m - 1)(f(x'_m) + q(x'_m))$. The boundedness of X implies $\lim_{m \to \infty} \{x'_m - f(x'_m)\} = n$ (strongly). By Lemma 2 we have a $x_4 \in X$ with $x_4 - f(x_4) = y$ and $\lim_{n \to \infty} \{x'_n\} = y$ = x4 (strongly). Finally the continuity of a induces $\lim_{m\to\infty} \{q_n(x_m')\} = q_n(x_1) \quad \text{such that } x_1 = q_n(x_1): \text{ We have}$ $x_4 - f(x_4) = q_1(x_4)$, i.e. $f(x_4) + q_2(x_4) = x_4$, q.e.d.

The same method used in the proof of Theorem 4 yields

Theorem 5: Let $(E, \| \| \|)$ be a reflexive Banach space and suppose X is a closed, bounded, convex subset of E and $x_0 \in int(X)$; let $f: E \to E$ be a uniformly generalized contraction with respect to X and $g: X \to E$ be such that

 $(K_3) \bigwedge_{X,y \in E} \bigwedge_{\lambda \in R} x \in \text{Ind}(X) \wedge (f+g)(x) = \lambda x + (1-\lambda)x_0 \Longrightarrow \lambda \leq 1.$

Then f + a has a fixed point.

Remark 5:

Theorem 5 is proved by W.A. Kirk in [3] for $x_o = 0$ (using a method of F.E. Browder [2]) and by W.V. Petryshyn in [7] (degree method).

References

- [1] S. FUČÍK: Fixed point theorems for sum of nonlinear mappings, Comment.Math.Univ.Carolinae 9(1968), 133-143.
- [2] F.E. BROWDER: Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull.Amer.Math. Soc. 74(1968),660-665.
- [3] W.A. KIRK: On nonlinear mappings of strongly semicontractive type, J.Math.Anal.Appl.27(1969),409-412.
- [4] W.A. KIRK: Mappings of generalized type, J.Math.Anal. Appl. 32(1970), 567-572.
- [5] M.A. KRASNOSELSKI: Two remarks on the method of successive approximations, Uspehi Mat.Nauk 10, No 1(63)(1955),123-127.
- [6] W.V. PETRYSHYN: Structure of the fixed point sets of k-set-contractions, Arch.Rat.Mech.Anal.40(1971), 312-328.

- [7] W.V. PETRYSHYN: A new fixed point theorem and its application, Bull.Amer.Math.Soc.78(1972), 225-229.
- [8] J. REINERMANN: Fixpunktsätze vom Krasnoselski-Typ, Math.Z.119(1971),339-344.
- [9] J. REINERMANN: Über Fixpunkte kontrahierender Abbildungen in uniformen Räumen und deren Darstellung durch konvergente Iterationsverfahren,
 Ber.d.Ges.f.Math.u.Datenverarb.Bonn,Nr 4,
 1968.
- [10] A.E. TAYLOR: Introduction to Functional Analysis, John Wiley & Sons, Inc., London-Sydney, sixth printing 1967.

Rhein.-Westf.Techn.Hochschule
Aachen

BRD

(Oblatum 27.7.1972)

. ¥