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FIXED POINT THEOREMS FOR GENERALIZED CONTRACTIONS

Jochen REINERMANN, Aachen

W.V. Petryshyn has given in [7] some fixed point
theorems on so called [3],[4] "generalized contractions"
(Def. 1 (i)) and on "uniformly generalized contractions"
(Def. 1 (ii)) proving them by a degree argument (and
therefore function’s domains must have interior points).
We strengthen and generalize some of these results by a
unifying and elementary approach, using methods discus-
sed in [3],(4],(5],08),(9].

Definition 1: Let (E,ll I) be a normed linear

space and J £ X c E ;

(i) £: X— L is said to be a "generalized contrac-
tion": <>
(x) V A (x,gleX xX = Uf(x)-£(g)l <

«: X->L0,1) x,4&E
oo (x)lx-gl ,
(ii) £;E — E is said to be a "uniformly generalized

co’ntraction with respect to X ": ¢(=>

(x*)“:\s/_.w,v /x\,*‘! (x,g)e Ex X=> Nf(x)-£(g)l £
£ o6 (x) lx-all .,
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Remgrk 1:

1) Contractions in the sense of Banach are generalized
contractions.
2) [4): Let (E,I ) be a normed linear space and sup-
pose J £ X c E is open, bounded and convex; let
£: X — E be continuously (Fréchet) differentiable.
Then £ is a generalized contraction iff 1£}1 < 1
for all x € X . A similar example may be given satis-
fying condition (xx), see [3].

Theorem 1: Let (E, ) be a normed linear space
and suppose ¥ is a Hausdorff topology for E , such that

(i) (E,¥) is a topological linear space,

(ii) /\E S convex A S ¥ -compact =» S is norm-
Sc

bounded,

(iii) x/e\E AOB(x"‘)::{'y"”' eEAIx-gylsrt=B(x,n)

is ¥ -closed.
Let f + X c E be a convex X -compact subset of E
and sup;}oae £: X = X is a generalized contraction.
Then: (a) There is a unique X, € X such that £(x,) =
= Xo 3
(b) For z € X we have m {£™(2)} = x,
e -

(strongly).

Proof: (a): Let 7: =4{SIf + Sc X, S convex,
¥ -closed and £(S) e S} .
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We have 2"+ (X & 7°) . Ordered by S, = S, :<=>
> 5,25 8, , it can easily be seen, (9", £ ) being
inductively ordered. Let S, & 7° be maximal (Zorn).
Defining d": = diam (S8,) we have 0 =< o (ii).
Assume J"> 0 and let x € 8, ; we define J, : =
iz (x)d” and 8,:= S, AB(£(x),d;) . We have
P 5cX (SocXAf(x)e 8,y) and 8, is ¥-
closed by (iii). Finally, we have for z € S, £(z) & S,
and Mf(x)~f (2 (X)llx-2llge x(x)d= dy ,
ie. £(8)c 8y: 8y = 8, (maximality of S, ). This
implies S, ¢ B(£f(x),d, ) . Now define S, : =
’=9Qs,‘s° NnBCy,dy) . Then fF % S, ¢ X
(S c X Af(x)&S,), 5, is convex and Y -closed
by (3ii). It is essily verified that (x)co LECSs) ] =
= §, (¥ -closed convex hull) [Take S4: = mx
and prove S; e 7 and S3c S,] . Now let w e S,
and 4 € S, .

Then €(w)-fiy)lellu-4gllsd;, i.e. £(S,)c
c BCf(w),d% ) . It follows S, = crL£(Ba)3° c
c B(ECw), d; ) e B(f(w),d;) by (iii), i.e.
£(w) eg.Qs,B('“"d.‘;) NSy , i.e. £(u)e S, . The
maximality of S, gives S, = S, . Finally let w,we
€S, ; wehave u € B(w,d3) (wvreS,) implying
lu-wlledy and diam (S,y) £ dy < J= diam. (S,),
a contradiction: We have d"= 0 , i.e. there exists X, €
€ X such that S, = {x,% . Because of £(S5,) c S,
we have £(x5) = Xo 3 (b) Let z € X and m € N .

?
Then U™ (2)-Xo Nl & I £™(2)-£ (x, )0 £ & (%o ME™? (2)-x, 1
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implying (by induction) Mf™(x)-x, Il € Loc (x,)I™ Nz -,

such that Um {£™(2)t=x, (0€«x (x,)< 1) ; (b) is
m - o b

proved. The uniqueness of X, is an immediate consequen-

ce of (b) or, directly of £ ‘s contraction property

CHE(x)-£(y M ix-gy for x4+ gy .

Corollary 1: Let (E,l I) be a normed linear spa-
ce, let ¥ be a Hausdorff topology for E with (i) -
(iii) of Theorem 1. Let R = 0 and suppose B (0,R)
is ¥ -compact and f : B(0,R) — E is a gene-
ralized contraction such that I€f(x)Il £ R if Axh=
=R (i.e. £(2d(B(0,R))) cB(0,R)) .

Then: (a) There exists a unique X, € B(0,R) such that

£(X) = X4 3
(b) For z e B(O,R) we have

”%{E—;_-(ldwf)l"‘(z)} = x, (strongly).

Proof (see [4]1): Define ¢ :B(0,R) — E by
g:= -;.-(Id,-l-f) .Then we have @ (BC(0,R)) ¢B(0,R),

% is a generalized contraction, the fixed point sets
of £ and @ are the same. Theorem 1 completes the proof.

Remark 2:

Examples for ¥

1) Let CE,i 1) be a conjugate space and let ¥ be the
weak* topology for £ . Then (i) - (iii) of Theorem 1 co-
mes true.

2) Let (E,l 1) be a reflexive Banach space and let ¥
be the weak topclogy for B ., Then (i) - (iii) of Theo-

rem 1 comes true.

3) W.A. Kirk [4] proves Theorem 1 and Corollary 1 in the
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case of a conjugate space (E, 0N and the weak *
topology for E .

Theorem 2: Let (E, I l) be a normed linear spa-
ce, suppose ¥ is a Hausdorff topology for E , such
that
(i) (E, %) is a topological linear space,

(ii) SAE S convex A S ¥ -compact = S is norm-

c
bounded,

1ii) A m/;q Blx,n)i=Ayly eEAlx-yleni=B(x,1)is
% -closed,
(iv) The norm topology for E is finer than ¥ .
let g £ X cE be a convex ¥ -compact and
¥ - (sequentially compact) subset of E , let £: X —
— F  be a generalized contraction and ¢:[X,Y]I—

—>[E,I ] sequentially continuous such that
(k4) u,/:\x;eE (X, 3 e X xX = £f(x)+g(y)eX .

Then £ + 9 has a fixed point.

Proof: Let a4 e X . We define h,’_: X— X (Ky)
by h.,,‘_ (x): = £(x) + g (y) ; h,y_ is a generali-
zed contraction. By Theorem 1 there is a unique Xy € X
such that Ja, (xy) = Xy . Defining T:; X — X by

'T(g,):=.x,,5 we have for 4, zx € X

ITCy) - T(2) £ Uxy - %, 0 Ny (xy )=ty (x, )0 £
£ 1f(x) ~£(x )+ ¢ (g) -g(x) & V£lxy) - £Cx )0 +
T g () - qe)ll € « (xy) sy - x, I+ g (g)-g ()2

’

€ x (X ) I TCy) - T2l 4+ g (g) - g (=)
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such that

(%) UTCy)~TC(2) £ —4-—Ilg,(ry,)—9,(z)ll .
1- (.x,,)

T 1is continuous in the norm topology: let { Xn ¥ € x™

and X, € X such that x, — X, (strongly). Then by

(iv) ¥ -@% i{xX,3 = %, . Now g (xn) — g (x,)

and {T(x,)}— T(x,) (strongly) by (x ). Let

{T(x,)}€ IN, {xq} € X" . There is a subsequence

{xh3 e x™ of {x,? @ X" and x, e X such that
¥- mixpnt = x4 (X is ¥ - (sequentially com-
pact)). Then g (x,)— g (x,) (strongly), comsequently

’ 4 ’ .
by (x) 1 T(xp) = Tlx, )& jl_—o(._(x,:)"?(x“)- gx M+ 0 j.eo
{T(xy)3 has a (strongly) convergent subsequence. Fi-

nally X is norm-bounded (ii) and norm-closed, because
X is ¥ -closed and ¥ is coarser than the norm to-
pology. Schauder ‘s fixed point theorem completes the
proof (for let ¢ € X  such that g4 =T(g) then y=T(y)=
= X, and Xy =k (x,,_’:f(u’)d-q.(q.) yieeo g = £(g) +
+q9C(yg) ).

Remark 3:

1) W.V. Petryshyn [7] proves Theorem 2 in the case of a
reflexive Banach space (E, |l ) and the weak topology
for E (satisfying all conditions of Theorem 2) for a
subset X c E additionally satisfying imt (X) + g
(&egree method).

2) In the case of a conjugate space CE,ff) and the

weak* topology for E , 8 F -compact convex subset of
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E need not be ¥ - (sequentially compact). This, how-
ever, is true, if (E, N 1) is strongly separable
({1031, p.209).

3) The Krasnoselski condition (K,‘) is very restrictive,
as the following simple example shows: Let E : = R
(absolute value norm), X:=1[0,4]1; f,9:X — E defi-

ned by f(x):=%x - q(.x):=1-—;-.x . Then (4,0) e

e XxX but £<4)+?(0)=-§_—¢x . In the case of a

Banach contraction £ and a compact g and a closed, botlm-
ded (strongly), convex subset X ¢ E (K,) can be weake-
ned to "(f+¢)(X)e X " ([11,(8]). In our situation this
could be done also (see the proof of Theorem 4), if
(i) Id ~ £ 1is demiclosed [8], or (ii) (Id ~£)(X) is
closed, or (iii) (Ic(.—i-g,) (X) is closed, or (iv) If
0e(Td-£-g) (X)™™ then 0 & (ld-£-g)(X) .
With the same method employed in Theorem 2 - now using
Corollary 1 - we can prove

Theorem 3: Let (E,H Il) be a normed linear space
and suppose ¥ is a Hausdorff topology for E , such that

(i) (E, ¥) is a topological linear space,

(ii) SAE S convex A S ¥ -compact = § is norm~
(3
bqunded,

(iii)xﬁ\e "/\ob(x,m): ={yly eEAlx-yllanl=pB(x,r)is

>
¥ -closed,
(iv) The norm topology for E  is finer than ¥ .
Let R 2 0 and suppose B(0,R) is ¥ -com-
pact and ‘¥ - (sequentially compact) and £ : =

1= B(0,R) —E is a generalized contraction, let
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¢:[X,¥]—>LE,IN] be sequentially continuous,
such that

(Kg) A lxl=RAlgleR = £(x)+q(y)eBO,R) .
,yeckE

’
Then £ + g has a fixed point.

Remark 4:
W.V. Petryshyn prov3s Theorem 3 in [71 in the case of a
reflexive Banach space and the weak topology (see Remark
2).
The method developed in [3] yields

lemmg 1: Let (E, ) be a reflexive Banach space
and suppose X is a nonvoid, closed, bounded, convex sub-
set of E ; let £:E — E be a uniformly generali-
zed contraction with respect to X and {x,te X™  such

that nﬂ_‘n:o {xy ~ £(Xx, )} = 0 (strongly).
Then (a) £ has a unique fixed point x, € X ,

(b) “% {%Xp ¥ = X, (strongly).

Proof: See [3], proof of Theorem 2.
As a corollary of Lemma 1 we obtain

gm_:g__a: Let CE, M 1) be a reflexive Banach space
and suppose X is a nonvoid, closed, bounded, convex sub-
set of E ; let £: E — E be a uniformly generalized

contraction with respect to X and let {x,%e X" ana
4 € E such that m {xn-£(x,)} =4 (strongly).

Then (a) There is a unique X, X such that x, -
o= £(x4) = ,
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Proof: Define ¢:E — E by g (x): = £(x) + 4 .
Then ¢ is a uniformly generalized contraction with res-
pect to X and “% {x,-¢(Xn )3 = 0 (strong-
ly). Thus, by Lemma 1, there is a unique X, € X such
that g (x,) = x, , i.e. Xy - £(xy) =4 and

n% {xpd = x4 (strongly).

Theorem 4: Let (E,N k) be a reflexive Banach space
and suppose X 1is a nonvoid, closed, bounded, convex sub-
set of E ; let £: E — E be a uniformly generalizel
contraction with respect to X and let g.: X — E be
compact such that (f+g)(X)e X .

Then £ + g has a fixed point.

Proof: Without loss of generality we may assume 0 €
€eX .Llet fa,%e O, DN with fim §Ant =4 .
We define £, 1= Apf, qu:=Apng for neN and we
have (£, + g )(X)c X . Because of £, (x)~ £, (g)N&
£ Ay (XMx-apll €A, Ix-nyll and qu being compact,
there is a sequence {x,} & X™ such that £, (x,) +
+ g (Xp) = X, (see [11,[8]). Because of ¢ ‘s compact-
ness there exists a subsequence {x, 36 xM or {fx,7 and
4 e E such that ”% £9(xpn)3 = 44 (strongly). Now .
we have for m € N : Xjp - £(xp)~ ¢ (xp) =
=,(.7L;L-4)(£(x,',,) + q',(.x,',,,)) . The boundedness of X imp-
lies “% {x,-£(xa)% = g (strongly). By Lemma 2 we
have a %, € X  with x,- £(x,) = @ andM{x;,is
= X4 (strongly). Finally the continuity of g induces
o 19 (%, )3 =g (x,) such that 4 =q(x,): We have
% -£(x) = g(xq) , icee £(XV 4+ g(xg) = X, , qeeede
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The same method uséd in the proof of Theorem 4 yields
Theorem 5: Let (E, Il { ) be a reflexive Banach spa-
ce and suppose X is a closed, bounded, convex subset of
E and x,e€imt(X); let £:E — E be a uniformly
generalized contraction with respect to X and ¢: X —
— E be such that
(K3)x{;.5 ,/L\.lx etrd (IA(£+g)X) = Ax + (1-M)xy=dp X & 1,
Then £+ q has a fixed point.
Remark 5:
Theorem 5 is proved by W.A. Kirk in [3] for xo =0 (u-
sing a method of F.E. Browder [2]) and by W.V. Petryshyn
in (7)) (degree method).
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