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A NOTE ON COMPATIBLE REFLEXIVE RELATIONS ON QUASIGROUPS

Tomé$ KEPKA, Praha

Basic definitions used in this paper can be found in
[1] or [2).

A relation @ on a groupoid G will be called comp;-
tible if for all e, &, c,d e G :

laplred cpd) = acp &d .
A reflexive relation @ on G will be called semicompa-
tible if for all a, &, c €G :

a @l = (acplbec et ca pect) .
A relation @ on G is called normal if for all a, &, c ,
deG:
(acolrd 2t (aplrwelcpd)) = (aplretcpa)
A reflexive relation @ on G is called seminormal if
for all a, ¥,c € G :

(acplrc wel ca pelr) = ap & .

The following lemma is evident.

Lemma 1. Let G be a groupoid and @ a reflexive re-

lation on G . Then:
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(i) if @ is compatible then ® is semicompatible;

(ii) if @ is semicompatible and transitive then @ is com-
patible;

(iii) irf @ is normal then @ is seminormal;

(iv) if @® is seminormal, semicompatible, transitive and

symmetric, then ® is normal and compatible.

Theorem 1. Let G be a commutative groupoid and @
a reflexive relation on G . Then:

(i) if @ is normal, then @ is symmetric;

(ii) if @ is compatible and seminormal, then @ is
transitive;

(iii) if @ is compatible and normal, then @ is a
normal congruence relation.

Proof. (i) Let a, & e G and a @ & . We have
a X [ akr , alr = ba . Hence Ir?w (since @ is
normal).

(ii) Let a, &, c € G be such that @ @ £ and
L pec . Hence alr @ bc . But We = cl . Thus
a gJ c .

The statement (iii) follows from (i) and (ii).

Theorem 2. Let @ be a division groupoid and @ a
reflexive normal compatible relation on G . Then @ is a
normal‘ congruence relation on 6 .

Proof. At first we shall prove that ¢ is transitive.
Let a, &, ce @ be such that & @ & and L @ec .
There are X, 4 € @ such that &'x = ag =a . We
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have a @a , that is a4 @ &x . Hence 4 @ x . Fur-

ther, we have Arx @ ex hence a4 @ cX . But

)
/y, @ X . Therefore a §> ¢ . Now we shall prove that @
is symmetric. Let @, ##6€ @ and let @ @ & . There are
X,4,2 such that ax = &y = &, b2z =a . Thus
we can write &2 @ &4 . Hence x @ 4 , and hence,
@z @ &ay . Therefore ax @ £ . But & =ax .Hen-
ce av @ X . Hence x @ X . Further a’$°‘z"’.
which means &2 @ @x . Since z @ x , we get e a.
In the remaining part of this paper we shall prove that
every cancellation groupoid can be imbedded in a quasigroup,
every semicompatible and reflexive relation of which is se-
minormal. Such a quasigroup will be called a N -quasigroup.
It is evident that every N -groupoid is a cancellation
groupoid and hence its every subgroupoid is a cancellation

groupoid.

Theorem 3. Let G be a N -groupoid. Then every semi-
compatible equivalence relation on G is a normal congruen-
ce relation. Further, every semicompatible ordering on G
is a seminormal compatible ordering.

" Proof: By Lemma 1.

Lemma 2. Let @ be a quasigroup. Then there are a qua-
sigroup ?0'. and mappings o, (3 of G into ﬁ such that
G is a subquasigroup of @  and for all x,y e G it
holds:

(X)) (B(x)(xgy)) = .
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Proof. Select for every a, &, c,d € @ diffe~
rent symbols 6 (a),2 (&), @ (c,a). Let R be the
set oonsisting of. all elements of & and of all symbols
6(a), t(&), @Cc,d ). On the set R , we shall de-
fine a partial binary operation & . Let a, & & R . Then
@ % A& is defined only in the following cases:

(i) a, & € @ . Then a x & = al .

(ii) There ie ¢ € @ such that a = 6 (c) and
re @ .Ten a x & = @ (e, &) .

(iii) There are ¢, d € @ such that a = =¥ (e¢) ,
& = @ (e,d). Then ax b = e
that ce =d .

, where e € @ such

R(x) is a halfgroupoid and @ 1is a subquasi-
group of R(x) ., We shall prove that R (%) is a cancel-
ation halfgroupoid. At firat the left-cancellation law.

Let a, r,c e R(x), let a x &,a%xC be de-
fined and @ % £ = a X ¢ , Such cases can arise:

(i) @ & @ . Then necessarily A, c €@ and o x & =

=alr=axec = ac , Hence & =c ,

(ii) There is d € @ such that @ =& (d ) . Hence

A, cel and w*b’:p(d,bka*c:p(d‘,c,) . There~
fore ¥ =c .

(iii) There is d € & such that a = 2(d) .Hence there are
e,fe such that & = p(d,e), ¢ = o(d,£) , Then
axr=g=axec =4 , were dg=e,dh =£ . But
¢ =% ,hence e =£f , and hence, & =c .

Now the right cancellation law. Let o, 4, ¢ € R(x)
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and & %xa = ¢ x @ . We must discuss the following cases:
i) a,&,c e . Thet L xa=4~a=cxa =ca.

Hence & =c¢ .

(ii) @ € G and there are d,e s @ such that
b =6(d), c=6(e). Ten xa=g@(d,a)=ckas=

=@(e,a) .Therefore d =€ , hence & =c .

(iii) There are d, ¢ € @ such that a = @ (d,e) .
Then necessarily & = @#(d) =c¢ . l

It is well known that every cancellation halfgroupoid
can be imbedded in a quasigroup. (See R,H. Bruck:A survey of
binary systems, Springer-Verlag,1966.) Hence there is a qua-
sigroup 5 such that R (x) is a subhalfgroupoid of 5 3
If x,n are arbitrary elements of @ then

() (F(x)(xy)) = ¥(x) x (6(xX) x xqg) =

=T(x) % p(x,xy) = np .

Now it is sufficient to put « (x) = 2(x), B(x) = &(x) .

Lemma 3. Let & be a quasigroup. Then there are a qua-
sigroup ZI and mappings «,,(3 of G into E such that @
is 'a subquasigroup of 25 and for every x, Y € 6 it
holds: 4

((ry.x)f&(.x))w(.x) = a4 .

Proof. The proof is dual to that of Lemma 2.

Theorem 4. Any cancellation groupoid can be imbedded in
an N -quasigroup.
Proof. Let G be a given groupoid. Since @ can be
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imbedded in a quasigroup, we can presume without loss of ge~-

nerality that @ is a quasigroup. Put § = ao , Qi = 61«'_4

for all 0dd 4+ = 4,8, = a;,_,, for all even £ = 2

( 64:,5.1-’ in the sense of Lemmas 2,3). We have @ = ao s

€ 8, £ @, S... . There is a quasigroup P such that

o0

P =Y G

a semicompatible reflexive relation on P. Let a,fr,ce P

% and Q;, are subquasigroups of P. Be ©
and let a fr @ ac , There is an even 4 = 2 such that
a,t,ce@; . But B 4= E;, . Hence there are map-
pings «; , (3; of @; into B .4 such that

() (x)(xq)) = 4 for all x, sy € G . Hence
we have ¢ = oy (2 ) (f3, (a,)(a,c)),,&'=oc1;(a/)(ﬂi(a)(a£r)).
But @ is semicompatible. Thus

x; (@) (f;(a)alr)) p x; (a)(fB; (a)(ac)) .

Hence & @ ¢ . Similarly if & a @ ¢a . Therefore P

is an N—quasigroup.
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