

Werk

Label: Article **Jahr:** 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0013|log55

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 13,3 (1972)

A NOTE ON COMPATIBLE REFLEXIVE RELATIONS ON QUASIGROUPS

Tomáš KEPKA, Praha

Basic definitions used in this paper can be found in [1] or [2].

A relation ϕ on a groupoid G will be called compatible if for all a, \mathcal{V} , c, $d \in G$:

 $(a p b et c p d) \Rightarrow a c p b d$.

A reflexive relation φ on G will be called semicompatible if for all α , ℓr , $c \in G$:

 $a p b \Rightarrow (ac p bc et ca p cb)$.

A relation φ on G is called normal if for all α , b, c, $d \in G$:

(acplied et (aplied cod)) \Longrightarrow (aplied cod).

A reflexive relation p on G is called seminormal if for all $a, l, c \in G$:

 $(ac p bc vel ca p cb) \Rightarrow ap b$.

The following lemma is evident.

Lemma 1. Let G be a groupoid and φ a reflexive relation on G. Then:

AMS, Primary: 20N05

Ref. Z. 2.722.9

- (i) if φ is compatible then φ is semicompatible;
- (ii) if φ is semicompatible and transitive then φ is compatible;
- (iii) if \$\rho\$ is normal then \$\rho\$ is seminormal;
 (iv) if \$\rho\$ is seminormal, semicompatible, transitive and symmetric, then \$\rho\$ is normal and compatible.

Theorem 1. Let G be a commutative groupoid and g a reflexive relation on G . Then:

- (i) if @ is normal, then @ is symmetric;
- (ii) if φ is compatible and seminormal, then φ is transitive;
- (iii) if φ is compatible and normal, then φ is a normal congruence relation.
- <u>Proof.</u> (i) Let $a, b \in G$ and $a \circ b$. We have $a b \circ a b$, a b = b a. Hence $b \circ a$ (since ϕ is normal).
- (ii) Let $a, b, c \in G$ be such that $a \circ b$ and $b \circ c$. Hence $ab \circ bc$. But bc = cb. Thus $a \circ c$.

The statement (iii) follows from (i) and (ii).

Theorem 2. Let Q be a division groupoid and φ a reflexive normal compatible relation on Q. Then φ is a normal congruence relation on Q.

<u>Proof.</u> At first we shall prove that φ is transitive. Let $\alpha, k, c \in Q$, be such that $\alpha \varphi k$ and $k \varphi c$. There are $x, y \in Q$, such that $kx = \alpha y = \alpha$. We have $a \ \varphi a$, that is $a \ y \ \varphi b \times$. Hence $y \ \varphi \times$. Further, we have $b \times \varphi c \times$, hence $a \ y \ \varphi c \times$. But $y \ \varphi \times$. Therefore $a \ \varphi c$. Now we shall prove that φ is symmetric. Let $a, b \in Q$ and let $a \ \varphi b$. There are x, y, x such that $a \times = b y = b$, $b \times = a$. Thus we can write $b \times \varphi b y$. Hence $x \ \varphi y$, and hence, $a \times \varphi b y$. But $b = a \times$. Hence $a \times \varphi b \times$. But $b = a \times$. Hence $a \times \varphi \times$. Further $a \times \varphi b \times$. Which means $b \times \varphi \otimes A \times$. Since $a \times \varphi \otimes A \times$, we get $a \times \varphi \otimes A \times$.

In the remaining part of this paper we shall prove that every cancellation groupoid can be imbedded in a quasigroup, every semicompatible and reflexive relation of which is seminormal. Such a quasigroup will be called a N -quasigroup. It is evident that every N-groupoid is a cancellation groupoid and hence its every subgroupoid is a cancellation groupoid.

Theorem 3. Let G be a N-groupoid. Then every semicompatible equivalence relation on G is a normal congruence relation. Further, every semicompatible ordering on G is a seminormal compatible ordering.

Proof: By Lemma 1.

Lemma 2. Let G be a quasigroup. Then there are a quasigroup G and mappings G, G of G, into G such that G is a subquasigroup of G and for all X, $Y \in G$, it holds:

$$\infty(x)(\beta(x)(xy)) = y .$$

<u>Proof.</u> Select for every $a, b, c, d \in A$ different symbols $\delta(a), \tau(b), \rho(c, d)$. Let R be the set consisting of all elements of A and of all symbols $\delta(a), \tau(b), \rho(c, d)$. On the set R, we shall define a partial binary operation *. Let $a, b \in R$. Then $a * b^*$ is defined only in the following cases:

- (i) $a, b \in Q$. Then a * b = ab.
- (ii) There is $c \in Q$, such that a = 6(c) and $b \in Q$. Then $a * b = \varphi(c, b)$.
- (iii) There are $c, d \in Q$ such that a = v(c), l = g(c, d). Then a * l = e, where $e \in Q$ such that ce = d.
- R(*) is a halfgroupoid and Q is a subquasigroup of R(*). We shall prove that R(*) is a cancelation halfgroupoid. At first the left-cancellation law.

Let a, b, $c \in R(*)$, let a * b, a * c be defined and a * b = a * c. Such cases can arise:

- (i) $a \in Q$. Then necessarily ℓr , $c \in Q$ and $a * \ell r = a \ell r = a * c = a c$. Hence $\ell r = c$.
- (ii) There is $d \in Q$ such that $a = \sigma(d)$. Hence lr, $c \in Q$ and $a * lr = \varphi(d, lr) = a * c = \varphi(d, c)$. Therefore lr = c.
- (iii) There is $d \in Q$ such that a = v(d). Hence there are e, $f \in Q$ such that b = p(d, e), c = p(d, f). Then a * b = q = a * c = b, where dq = e, dh = f. But q = h, hence e = f, and hence, b = c.

Now the right cancellation law. Let $a, b, c \in \mathbb{R}(*)$

and b*a=c*a. We must discuss the following cases:

(i) $a, b, c \in B$. Then b*a=ba=c*a=ca.

Hence b*a=c*a=ca.

- (ii) $\alpha \in \mathbb{Q}$ and there are d, $e \in \mathbb{Q}$ such that b = 6(d), c = 6(e). Then $b * \alpha = p(d, \alpha) = c * \alpha = p(e, \alpha)$. Therefore d = e, hence b = c.
- (iii) There are d, $e \in Q$, such that $a = \varphi(d, e)$. Then necessarily $b = \varphi(d) = c$.

It is well known that every cancellation halfgroupoid can be imbedded in a quasigroup. (See R.H. Bruck:A survey of binary systems, Springer-Verlag,1966.) Hence there is a quasigroup $\widetilde{\mathcal{A}}$ such that R(*) is a subhalfgroupoid of $\widetilde{\mathcal{A}}$, If x, y are arbitrary elements of $\widehat{\mathcal{A}}$ then

$$\tau(x)(\sigma(x)(xy)) = \tau(x) * (\sigma(x) * xy) =$$

$$= \tau(x) * \rho(x, xy) = y.$$

Now it is sufficient to put $\alpha(x) = \alpha(x)$, $\beta(x) = \alpha(x)$.

Lemma 3. Let G, be a quasigroup. Then there are a quasigroup \overline{G} and mappings ∞ , β of G into \overline{G} such that G is a subquasigroup of \overline{G} and for every x, $y \in G$ it holds:

$$((yx)\beta(x))\alpha(x) = y.$$

Proof. The proof is dual to that of Lemma 2.

Theorem 4. Any cancellation groupoid can be imbedded in an N-quasigroup.

Proof. Let Q be a given groupoid. Since Q can be

imbedded in a quasigroup, we can presume without loss of generality that Q is a quasigroup. Put Q = Q, , $Q_i = \widetilde{Q}_{i-1}$ for all odd $i \ge 1$, $Q_i = \overline{Q}_{i-1}$ for all even $i \ge 2$ $(\tilde{\mathcal{Q}}_i, \bar{\mathcal{Q}}_i)$ in the sense of Lemmas 2,3). We have $\mathcal{Q}_i = \mathcal{Q}_0 \subseteq$ $\subseteq Q_1 \subseteq Q_2 \subseteq \dots$ There is a quasigroup P such that $P = \bigcup_{i=0}^{\infty} Q_{i}$ and Q_{i} are subquasigroups of P. Be φ a semicompatible reflexive relation on P. Let $a, \ell r, c \in P$ and let $ab \ \varphi \ ac$. There is an even $i \ge 2$ such that a , b , c \in Q_i . But $Q_{i+1} = \widetilde{Q}_i$. Hence there are mappings α_i , β_i of α_i into α_{i+1} such that $\alpha_{i}(x)(\beta_{i}(x)(xy)) = y$ for all $x, y \in A_{i}$. Hence we have $c = \alpha_i(a)(\beta_i(a)(ac)), k = \alpha_i(a)(\beta_i(a)(ak)).$ But @ is semicompatible. Thus αi (a)(βi (a)(ab)) φ αi (a)(βi (a)(ac)). Hence & oc. Similarly if & a oca. Therefore P is an N-quasigroup.

References

- [1] R.H. BRUCK: A Survey of Binary Systems, Springer-Verlag, 1966.
- [2] V.D. BELOUSOV: Osnovy teorii kvazigrupp i lup, Nauka, Moskva, 1967.

Matematicko-fyzikální fakulta Karlova universita Praha 8,Sokolovská 83 Československo

(Oblatum 25.10.1971)