

Werk

Label: Article **Jahr:** 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0013|log53

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae

13,3 (1972)

THE TOTALLY SIMPLE QUASIGROUPS

Tomáš KEPKA, Praha

Basic definitions used in this paper can be found in [1] or [2].

Let Q be a quasigroup and φ a relation on the set Q. We shall define the following conditions:

- (1) $\forall a, b, c \in \mathcal{G}$, $a \circ b \Rightarrow a c \circ b c$.
- (2) $\forall a, b, c \in A$, $a \otimes b \Rightarrow c a \otimes cb$.
- (3) $\forall a, b, c \in Q$, $a c o b c \Rightarrow a o b$.
- (4) $Va, b, c \in Q$, $c a p c b \Rightarrow a p b$.
- (5) $Va, b, c, d \in Q$, $(ac = bd \ et \ c \ pd) \Rightarrow a \ pb$.
- (6) Va, b, c, d & Q, (ac = bd et a p b) => c pd.
- (7) $\forall a, b, c, d \in Q, (a \circ b \text{ et } c \circ d) \Rightarrow a c \circ b d$.
- (8) $\forall a, b, c, d \in Q$, (ac p bd et cpd) $\Rightarrow a \circ b$.
- (9) $\forall a, b, c, d \in Q$, $(ac \rho bd et a \rho b) \Rightarrow c \rho d$.

Let M be a set. By $\sigma_{\rm M}$, we shall denote the set of all pairs (a,α) , $\alpha\in {\rm M}$. Further denote $\pi_{\rm M}={\rm M}\times {\rm M}$ and $\sigma_{\rm M}=\pi_{\rm M}\setminus\sigma_{\rm M}$; that is, $\sigma_{\rm M}$ consists of all prdered pairs (a,\mathcal{V}) , where $\alpha,\mathcal{V}\in {\rm M}$, $\alpha+\mathcal{V}$. Hence

AMS, Primary: 20N05

Ref. Z. 2.722.9

 σ_{M}^{r} , π_{M}^{r} and σ_{M}^{r} are relations on the set M .

If Q is a quasigroup then it is evident that the relations σ_Q , π_Q , σ_Q satisfy the conditions (1),(2),(3), (4),(5),(6). Moreover, σ_Q and π_Q satisfy (7),(8),(9). Every equivalence relation ρ on Q that satisfies (7), (8),(9) is called a normal congruence relation.

A quasigroup Q is called simple if every its normal congruence relation is equal to one of the relations $\mathscr{O}_{\mathbb{Q}}$, $\pi_{\mathbb{Q}}$. A quasigroup Q is called totally simple if every its relation \mathscr{O} that satisfies at least one of the conditions (1),(2),(3),(4),(5),(6) is equal to one of the relations $\mathscr{O}_{\mathbb{Q}}$, $\pi_{\mathbb{Q}}$, $\mathscr{O}_{\mathbb{Q}}$. Evidently, every totally simple quasigroup is simple. In this paper we shall prove that every quasigroup can be imbedded in a totally simple quasigroup.

Lemma 1. Let $Q_i(*)$ be the right inverse quasigroup of a quasigroup Q_i . Let g^{ij} be a relation on the set Q_i . Then:

- (i) φ satisfies (1) on Q if and only if φ satisfies (6) on Q(*).
- ii) A setisfice (2) on A if and only is
- (ii) φ satisfies (2) on Q if and only if φ satisfies (4) on Q(*).
- (iii) p satisfies (3) on Q if and only if p satisfies
 (5) on Q(*)

Proof. (i) Let φ satisfy (1) on Q, and let a, b, c, d $\in Q$ be such that a * c = b * d and $a \varphi b$.

Put x = a * c. Hence ax = c, bx = d. Since $a \varphi b$, $ax \varphi bx$. Thus φ satisfies (6) on Q(*). Again,

let \wp satisfy (6) on Q(*) and $a, b, c \in Q$ be such that $a \wp b$. There are $x, y \in Q$ such that a * x = b * y = c. Since \wp satisfies (6), $x \wp y$. But x = ac, y = bc. The proof of (ii) and (iii) is similar to that of (i).

Lemma 2. Let Q(o) be the left inverse quasigroup of a quasigroup Q. Let Q be a relation on the set Q. Then:
(i) Q satisfies (1) on Q if and only if Q satisfies (3) on Q(o).

(ii) φ satisfies (2) on Q if and only if φ satisfies (5) on Q (0).

(iii) φ satisfies (4) on Q if and only if φ satisfies (6) on $Q(\varphi)$.

Proof. Similarly as for Lemma 1.

Lemma 3. For every quasigroup Q there is a quasigroup \overline{Q} such that Q is a subquasigroup of \overline{Q} and if a, b, c, d \in Q, a \neq b, c \neq d, then there is x \in \overline{Q} such that $a \times . x = c$, $b \times . x = d$.

Proof. For every $a, l, c, d \in A$, $a \neq l, c \neq d$, select (pair-wise different) symbols x(a, l, c, d), y(a, l, c, d), u(a, l, c, d). Let H be the set consisting of all these symbols and of all elements of Q. We shall define a partial binary operation * on H. Let $m, m \in H$. Then m * m is defined only in the following cases:

(i) If $m, m \in Q$. Then m * m = mm.

(ii) If $m \in \mathbb{Q}$ and if there are $a, b, c, d \in \mathbb{Q}$, $a \neq b, c \neq d$, such that m = a, m = x(a, b, c, d). Then m * m = y(a, b, c, d).

(iii) If $m \in \mathbb{Q}$ and if there are $a, b, c, d \in \mathbb{Q}$, $a \neq b, c \neq d$, such that m = b, $m = \times (a, b, c, d)$. Then m * m = u(a, b, c, d).

- (iv) If there are $a, b, c, d \in \mathbb{Q}$, $a \neq b, c \neq d$, such that m = y(a, b, c, d), m = x(a, b, c, d). Then m * m = c.
- (v) If there are $a, b, c, d \in \mathbb{Q}$, $a \neq b, c \neq d$, such that m = u(a, b, c, d), m = x(a, b, c, d). Then m * m = d.

It is easy to show that $\mathcal{H}(*)$ is a cancellation halfgroupoid. Hence $\mathcal{H}(*)$ can be imbedded in a quasigroup $\overline{Q}(*)$. Evidently, Q, is a subquasigroup in $\overline{Q}(*)$. Let $a,b,c,d\in Q$, $a \neq b$, $c \neq d$. Put x = x(a,b,c,d). Then (a * x) * x = c, (b * x) * x = d.

Theorem 1. Let Q, be a quasigroup. Then Q can be imbedded in a quasigroup P having the following property: If $a, k, c, d \in P$, $a \neq k, c \neq d$, then there is $x \in P$ such that $ax \cdot x = c$, $kx \cdot x = d$.

<u>Proof.</u> Put $Q_1=Q_1$ and $Q_{i+1}=Q_i$ for i=1,2,3,... \overline{Q}_i by Lemma 3). We have $Q_1\subseteq Q_2\subseteq Q_3\subseteq ...$. Hence there is a quasigroup P such that $P=\bigcup_{i=1}^{\infty}Q_i$. Let $a,b',c,d\in P$, $a\neq b'$, $c\neq d$. There is i such that $a,b',c,d\in Q_i$. By Lemma 3, there

exists $x \in Q_{i+1}$ such that $ax \cdot x = c$, $\ell x \cdot x = d$. Let i = 1, 2, 3, 4, 5, 6. A quasigroup Q will be called an (i)-quasigroup if every its relation satisfying the condition (i) is equal to one of \mathcal{J}_{Q} , \mathcal{J}_{Q} , \mathcal{J}_{Q} .

Lemma 4. Every quasigroup Q can be imbedded in an (i)-quasigroup $Q^{(i)}$ for every i = 1, 2, 3, 4, 5, 6.

Proof. First for i=1. By Theorem 1, there is a quasigroup P having the following property:

Q is a subquasigroup of P and for every $a, b, c, d \in P$, $a \neq b'$, c = d, there is $x \in P$ such that $a \times . x = c$, $b \times . x = d$. Let φ be a relation on P and let φ satisfy (1). Let $\varphi \neq \sigma_p$. Since φ satisfies (1) there are $a, b' \in P$ such that $a \neq b'$ and $a \in b'$. Let $c, d \in P$, $c \neq d$, be arbitrary. There is $x \in P$ such that $a \times . x = c$, $b \times . x = d$. Since φ satisfies (1), $c \in A$. Hence $\sigma_p \subseteq \varphi$. Further, let $\varphi \neq \sigma_p$. Hence there is $a \in P$ such that $a \in P$ such that $a \in P$ be arbitrary and $c \in P$ be such that $a \in P$. Since $a \in P$ be arbitrary and $c \in P$ be such that $a \in P$. Now it is sufficient to put $P = \varphi(1)$.

Now for i=6. Let Q(*) be the right inverse quasigroup of Q(*) and that Q(*) is a subquasigroup of P(*). Let P be the right inverse quasigroup of P(*). Evidently, Q(*) is a subquasigroup in P(*). Let Q(*) be a relation on the set P(*) and let Q(*) satisfy Q(*) on Q(*). By Lemma 1, Q(*) satisfies Q(*) on Q(*). Hence Q(*) is equal to one of Q(*), Q(*)

Thus P is a (6)-quasigroup. For i = 2,3,4,5 similarly as for i = 6 by Lemmas 1,2.

Theorem 2. Every quasigroup can be imbedded in a totally simple quasigroup.

Proof. Let Q be the given quasigroup. Let $\alpha(i)$, for $i=1,2,3,\ldots$ be such a number that $1\leq \alpha(i)\leq 6$ and $\alpha(i)\equiv i \mod 6$. Put $Q_1=Q$ and $Q_{i+1}=Q$ and $Q_{i+1}=Q$ for $i=1,2,3,\ldots$ ($Q_i^{(\alpha(i))}$ by Lemma 4). Thus $Q_1\subseteq Q_2\subseteq Q_3\subseteq\ldots$. Hence there is a quasigroup P such that $P=\bigcup_{i=1}^{\infty}Q_i$. It is easy to show that P is totally simple.

References

- [1] R.H. BRUCK: A Survey of Binary Systems, Springer-Verlag, 1966.
- [2] V.D. BELOUSOV: Osnovy teorii kvazigrupp i lup, Nauka, Moskva, 1967.

Matematicko-fyzikální fakulta Karlova universita Praha 8, Sokolovská 83 Československo

(Oblatum 18.11.1971)