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FRATTINIAN CONSTRUCTIONS

Jarmila LISA, Praha

1. Introduction. In accordance with [1] and [3], we
define the Frattini sublattice of a lattice as the intersec-
ction of all its maximal sublattices and we denote it by
$ (L) ; if there is no maximal sublattice, we define
$(L)=1L (by a maximal sublattice, here a maximal proper
one is meant). So we have the analogue of Frattini ‘s con-
struction, very well known in groups ([2), p.156),

We use these symbols and assumptions:

) (resp. w ) signifies the symbol for the intersec-
tion (resp. for the union) of sets. Further, [a , £,...]
(resp. {a, &,... 3 ) denotes the set consisting of a, V...
(resp. the sublattice generated by the set [a , £,...1 ).

We sssume that J is a lattice and that the axiom
of choice holds.

We shall often use the following assertions:@

Let 1, be a lattice. Then
(i) QM(L”L\ I (L) € (L) ELAVIWL(n)

(cf.[3], Lemma 2; T (1,) means the set of all irredu-
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cible elements of L , L (u), or resp. L (~), means
the set of all v -reducible, or A -reducible elements
of L ). '

(i1) L) =[xl(xeL)& (VT L 4T, x} =L =>1T3 = L)1
(ef.[2], p.156).

2. Direct product

Let L , L, be lattices, L, x L, be their direct
product. Generally, it is not true that $(L, x L2)=§)fL4)x§>(I§_).
We shall introduce some conditions which permit to go over
to the decomposition of the Frattini sublattice formed for
the direct product of lattices.

Theorem 1. (a) Let L, L, be lattices and let any
maximal sublattice M of L g % L2 be of the form M =
s AxB where A is a sublattice of L1 , B is a sub-
lattice of L, .Then $(L ) x &(L,) s Q(L1 pe ]’.,2) ’

(b) Let for any maximal sublattice M,' of L4 and
for any maximal sublattice Mz of I, the lattices .M1 x
x L, and L,' x .M2 be maximal sublattices of I x L, .
Then

S(L) = d(Ly) 2 (L =xL,) .

Proof. 1) Let ¢ = (c“cz) € Q(L,,) » $(L,) and
cé(L, xL,) . By (a) there exists a maximal sub-
lattice M of L xL,, c¢ M  such that M= A x B .Sin-
ce M is maximal in L = L, =L, ,it mnust be either
M=Ax L, where A is a maximal sublattice of L, ,
or M = L,>B,DP being a maximal sublattice of Lz .
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Let M = A x L, where A is a maximal sublattice of
L, . Since cgM=AxL,,c,¢A, ¢, ¢ d(L) -a con-
tradiction.

2) Let us suppose (b). If < €d (L4) , then there ex-
ists a maximal sublattice M, of L, such that ¢, ¢ M1 >
By assumption, .M1 x T.,2 is a maximal sublattice of L .
For any element #, of L, we have Cc , &,) & M, xL,
and it follows that (c, ,%,) ¢ $(L) . Thus (L) s
1= Q(Lq)x L, .

Corollary. If the conditions (a) and (b) hold, then

(L)) = (P(L,_) = Q(L,, x L2> s

Definition. Let 1. be & lattice. We shall say that 1,
satisfies the X -condition for the element & ,if there
exists a maximal sublattice KX of I, which does not con-
tain £ and which contains some lr:,, A, such that l{, <
< 2” -< fb'z .

1, satisfies the X =condition, if 1. satisfies the

X -condition for any element of L\ $ (L) .

Lemma 1. Let L, , L, be lattices, &reL,,L, sa-
tisfying the X -condition for the element £, Then

@.CL,, xLz) =4 L,, *x (LyNI&1) .

Proof. L, =@ - trivial.

We assume L, # §; K, &, , &, are used in the same
sense as in the definition. We shall show that (x, ) €
¢ QCL1xL2) whenever (x, 4) ¢ L, x (L,N[&1) .
It is sufficient to show that there exists a proper sublat-

tice T of L1 =L, havin'g the property { T, (x,4)}

LyxLy™

= L1 > Lz . In our case we can take T = L,, x X (clear-
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y, L, xK § L, xL, ), (x,4)= (a,#) for arbit-
rary element a of L1 . We shall easily verify that

L= X, Ca, 2, .,
eL4x L, be arbitrary. As K is a maximal sublattice of

L, and & ¢ K , then wu = £(x,,...,x, ) where f

=L,>xL, : Indeed, let (,u) e
2

ie a lattice polynomial in L, and x,..,X, eK & [&].
Then (e, u)=£Cy,,...,q,) where £ is the same lat-
tice polynomiel as £ , but in L, xL,, 4 ; = (&, x;),
“ =1,...,m . If x; % & , then clearly (k,x;)e L xX;
if X, = & , then (fe, &) = ((&, &) v (a, &N n (k, b)),
icee (e, &) e 1L, xX ,(a,,,b*)},w,‘,_z ; 80 (M, u)e
efl, <X, (a, ")51.1,(1.2 .

Theorem 2, Let L, , L, be lattices, let L, satisfy
the X -condition. Then & (L ,xL,) € L x $(L,)

Proof follows by Lemma 1.

An immediate consequence of Theorem 2 is the following:

Corollary 1. Let L, be a chain without 0 and 1, L,
being an arbitrary lattice. Then (L xL,) = § .

Corollary 2. For an arbitrary lattice L, and any dis-
tributive lattice L, without 0 and 1

L, xL,)eLl, x $(L,) .

Proof. We shall show that I , satisfies the X =-con-
dition. Let us suppose that this is not true, i.e., that
there exists an element & e L,\ §(L,) such that for any
maximal sublattice K of L, which does not contain &, it
is either K € L,N[ &), or KX € L,\ (& ] . Say that
eg. K €LNLEH) .

In this case there is clearly an element £, of L, such
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that & < 4, . Since 2, ¢ K,{K.,b;rsz= Ly o
¥ e {K,b;}l_z - By distributivity of 1, , one of the

and hence

following cases is necessarily true:

1)1r=!.r;’uk, for some % e X ,

A =8 n bk for some & « K
3) '=C(L, uk)n M for some ko, h e K

and it is easy to check that we obtain a contradiction in
each of these cases. .

By AxB=BxA , it is immediate that the
following assertion holds:

Theorem 2°. Let L1 be a lattice satisfying the X -

condition, L, be an arbitrary lattice. Then
Q(L., 3 Lz) = Q(L,')x I.,2 .
It is possible to obtain similar results from Corol-

laries 1 and 2,

3. L -sum

Let L. be a lattice with the partial ordering <=,
and lattice operatione v , N , A€ I (L) a possibly

empty set, U =[L, laec Al a family of pairwise disjoint

lattices which are all disjoint with L ; if a &€ A , the
partial ordering in L, ia denoted by < a » the lattice
operations are denoted by Ug » Ng -

Denote K = (L\NA) v a.uch La and define a bina-
ry relation = in X :

- 515 -



"x, y €L , then x %€ a4 ;
x,ye€l,, achA,x S, y ;

x,yeK, x€ye>{ xel,,yely,a,VeA,ast, a & ¥
xel,,yeL\NA,aelA,a= 4,

xeL\NA,gel,,a€hA,x2 a .

The relation <. is a partial ordering. X is even

a lattice with operations U, N we shall describe

5
XUmp,XxNna for .xllqz

P‘{xug"*} x’%‘L’

X O of
X Ug 4
Xuny {xn: x4 8L, a el
x,n}ek,xﬂn};{ = 4 {aubb} xel,, 4ely, a,tredasl;
xn an

{aau._'y} xel,,aeA,gel\NA .
t an 4y

We shall call the lattice K the I, -sum ¢f the fa-
mily 9L and we denote X by = (L la €A) . It repre-
sents a generalization of 1, -sum defined in [3].

Now, let I, be a lattice with Jwe (L) # ; we can
ask if (= (L la € I (L)) = (L) Ma.“'.”A (L)
(ef.[3], Lemma 2).

As we assume that is a lattice, this is not in general

true, which can be demonstrated by Fig.l.
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Fig. 1

o L

o (L) =[0,4] X isthe L -sumof L ,6 L, ;
d(K)=g .
However, we can show
Theorem 3. Let L be a lattice, A & Jwe (L) and let
Lo, # 7  be a lattice for all @ € A . Then

s (L laeA)) = (L) w‘llild (L) .

Proof. Denote K = =, (L laecd) .
First we shall describe all maximal sublattices of X .
1) Let M be a maximal sublattice of I, and A S M . Then
Wa B (L, laed) is a maximal sublattice of X by
the definition of the binary operattons on X .
2) Let N be a maximal sublattice of Lg for some &re A .
Then M = EI_CL; la € A) is again a maximal sublat-
tice of X where for any element a € A, a % £ , there
is I, =L, and Ly = N .
3) The maximal sublattice of a different type does not exist:
If M is a maximal sublattice of K , let us denote

U =MmL, for a €A,

B=(MAaL)wlalaeA, L +0],
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icee, M= Z (Ll lacA@B) .
Let x €e K\ M be arbitrary, then $M ,x3 =X .

a) If x € L , then {M,x }K=(‘(B,x}L\A)w°_gnbL;
and this implies B is a maximal sublattice of L and
forall aeA L,=1, .

b) If x € L, for some & €A , then {M,x}, =

=UB, L NAw W o Lwily,x}  therefore for all

aeA, a+ wehave L =L, , L'y is a maximal
sublattice of 1, and (B, & = L.

In the case a), the maximal sublattice is of the sa-
me type a8 in 1), in the case b) it is of the same type as
in 2).

Fow we obtain immediately: $ (= (L, laeA))=P(L)w
v Y L) .

Corollary. Let LL:1i eI] bea family of latti-
ces. Then Q(z-&!ﬁ) -t $(L;) (where + denotes the
ordinal sum).

Proof. The ordinal sum is a special case of the L -
sum for a chain L ., In [3] this corollary follows .immedia-
tely from Lemma 2, but it is true also provided some of the
lattices are empty, for _+, L, = :—1\31.4 where
J-[é—|é-CI,Lé- ﬂ] .

4. ti 1 om ite properties

Khee-Meng Koh showed in his interesting paper [3] that
for each lattice L , Cand (L) = 1 there exists a
lattice K such that &(K) =1, . Evidently, it is
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true also for the lattice L = § .

We shall show here a generalization of Khee-Meng Koh’'s
construction, which gives some stronger results.

Let L. be a lattice with a partial ordering ék -

lattice operations v , N, and Carxa (L) = 2 ,

UNesD=[(a,¥)a,bel,a> L] .

We add two new elements a, (&), a,(&) to L for
all (a, &) e 9 such that if (a, &), (c,d) e U, (a, )+
% (c,d ) , supposing a,(?), a.z(b), c,(d),c,(d) pairwi-
se different. We obtain a set
K=Lwla;(2)14=1,2, (a,t) e ® ] . Let us introduce
two unary operations: For x e X we define X or X in
the following way:

DX=x=x if x el

@

2)X¥ma, x=4 if x = a;(&) for some (a,&)e YU ,
"4 = 4’ 2 .

Let us define a binary relation £, on K:

x,ypeK ,x= 3y & if x=g or X & gy -
Evidently, <, 1is a partial ordering in X . K 1is even
a lattice with lattice operations ¢ , n, , which are de-
fined as follows: If X, 4 € K, x <, 4 , then x Uy 4 =
ol ST LT Bl

if xly , then x Yy =Xy g, XNy =Xn_ oy .

Theorem 4. Let L. be a lattice with Caxd (L) = 2 .
Then there exists a lattice K which satisfies the follo-
wing claims:

(i) L. is embeddable in X , (ii) L=X(Vv) wK(n),
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(iii) $(X) = L

Proof can be given by the investigations of the latti-
ce X constructed for ¥ = [(a, &) (a, ) e D ,
a & (L) nvel r ¢ $CLII .
Evidently, the claim (i) is true.
(ii): If x e K\NL , then xe€ e (K); if x € I (L),
then x ¢ $ (L), i.e., there exista 4 €L  such that
either (x,g) e 9 or (y,x)e ¥ .In this case x ¢
¢ Jve (K) and (ii) is also true.
(ii1): KNL = I (K) € XN P (K) , i.ee, dK) s L .
If xeL, x ¢ (X ), then there is a maximal sublattice
M of X such that x & M , but then x ¢ $(L) for
x$Mm1lL and MAL is a maximal sublattice in L .
By the choice of ¥, x @ { It (K)} NI (K) € $(K) - a
contradiction.

Remark, 1) If the following supplement (iv) is added
to the hypothesis of Theorem 4,

(iv) every proper sublattice of K can be extended to
a maximal one,

it is possible to choose U = D (ef.[3], Th. 3).

2) Sometimes it is possible to take U =L(a, )]l a ,
Lel,a > &1 (for instance, when for each element
x of L. there exists an element 4 with x > n or
g >— X )

Defipjtion. Let L, be a lattice. We shall call the
lattice X  Frattini <0 -hull (or only Frattini hull)
of L ,iff X is formed from L by the introduced con-

struction for this 9! and the claims (i),(ii),(iii) are

- 520 -



true in X .

Theorem 5. Let L be a lattice with Caxd (L) > 1 ,
let X be ita Frattini hull. If 1. has some of the pro-
perties

(1) the lattice satisfies the D.C.C.;

(2) the lattice satisfies the A.C.C.}

(3) the lattice is finite;

(4) the lattice is complete; .

(5) the lattice is complemented,
then X has the same property.

Proof. 1) Let D.C.C. be true in L , let

() 4y >k 4y > oo Sk Ym >y o0

be a descending chain of elements in X , then

(++) Y4 2, Yo Z, e Z.Lh =, e
is a chain in L ;

%, = 44,4 1iff there exiats an element x ef L such
that

(+++4) ""i""é(""iu) for 4 = 4 ar 4 =2 .

Evidently, there exists a positive integer m asuch
that the chain (#+) has just m different elements; ac-
cording to this and to (+++), the chain (+) does not con-
tain more than 2m elements.

The case (2) can be demonstrated similarly.

3) Let I, be a finite lattice, then &) is also a fini-
te set and hence X ia finite.

(4) Let L. be complete and let M be a subaset of X .
Denote by H the set [x e K | ¥y e M 4 =y x] .
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If (a) H AM # f , then Card (H M) =1, i.e.,
HAM=TLh] and % is the supremum of M in X;
it ) HAM=f , denote N(H A L) by h. We
shall show that f2 is the supremum of M in X , Actual-
lys, xeM =¥y el x=194 =

=Yy el X=4y =T h =>x=h
further, if z €K, ¥x e M x &,z , then:

YxeM s X & 2 =z el => h = 2 = h<£2.

(5) Let L be a complemented lattice, x « L and let x’
denote a complement of the element x .
For 4 e K we shall distinguish the following cases:
If (i) % %1, then (%) is a complement of 5 in K |
if (i1) 4 4 0 ,then (y4)’ is a complement of 4 in X ;
if (1i5) F =4 and g = 0,ice. g=1,(0) or 4,(0),
then 41 (0) is a complement for 11 (0) in K .

This completes the proof of Theorem 5.

Remark. Let 1. be a lattice with Caxd (L) = &, ,
let K be its Frattini hull. Then C(ard (L) = Card (K).

Lemms 2. Let L be a lattice with (axd (L) > 2, X,
be its Frattini & -hull, X, be ita Frattini €L -hull
for < % D . Then X, is not iscmorph to X, .

Corollary. For each lattice L , Cand (L)> 2 , there
exist at least two Frattini hulls which are not isomorph.

Let I, be a lattice with Card (L) > 4, Denote L
by (L), , the Frattini hull of L by (L), (C(L), ), by
(L),,, for arbitrary positive integer m , supposing all

Frattini hulls constructed in the same way. It means e.g.
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that (L),, is the Frattini ‘“1 =hull of I, for ‘ﬂl1=
=[(a,#)a, ¥el, #—, al, (L), is the Frattini
9, -null of (L) for o, =L[(c,ad)] c,de(L)q,d«—-<m1cJ
and so on.
-4

We define (L) = nLU-Jo (L), as a lattice where the
partial ordering is determined by
X,y (L), , X< gy &= Am such that x, ¢ & (L),
and X ‘u)ﬂ’y’ * ‘

Let x denote the transitive closure of the follo-

wing relation € in “")ao s
X4 e(L)y,xeyeIn x4, xe(l), ,ypell), X=uny,orx=q

(X y X mean the elements corresponding to x under the

unary operations defined on the Frattini hull of (L)pog e

Iheorem 6. Let 1. be a lattice with Caxd (L) > 1 1let
for all x, 4 € L, x <, 4 there exist X , 4,6L such
that x— x, <, 4, — 4 and let each Frattini <%, -hull
be of this type:

A, = la, )]a, lre(L), ,, ¥—=<,, al.

+~1

Then & ((L),) = (L), .

21:_931. Let a2 € (L), \ $ ((L),),i.e., there exists
@ maximal sublattice M in (L), such that ¢ § M . Clear-
ly, a € (L), for some positive integer m. and there is
some £ € (L), such that a —q, ¥ or ,Qr—<“_)ma, ,8ay
Ir—-(a_,ma,,then a=a, (&)u @, (4) and therefore e.g.
a, (&) &M . 1If an element 4 €(L), such that
4 % a, (&) or n =a,(l) is contained in M , then
MelL\X where X =L[a,a, (#)] w[x|Ix €(L),, xxa,(8)] .
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But each element x of X \ [a] does not belong to
f(L\NX) wlali, , especially, a, (&) & {M,afy, -
a eontradiction.’

Then a, (&) and the elements -, 3 * a,(#) are not
contained in M and we again obtain a contradiction in

the same way.

5 erations of tini gublattic d ir
problem of [3]

Let L. be a lattice and o« and ordinal number. Deno-
te by $°(L) the lattice L . We shall proceed by trans-
finite induction in defining &%(L) = H(* L)) if x -1
exists and $™(L) 'n@;QA(L) for « limiting ordinal.

We shall say that X is a submaximal sublattice of
L of the order 0 iff K =L . We shall call X the

submaximal sublattice of L of the order o« + 4 iff one
of the following cases takes place:
Case I. K is a maximal sublattice of a submaximal subla-
ttice of the oréer - 2
Case II. There is no maximal sublattice in every submaximal
sublattice of the order «x and X ia a submaximal sublat-
tice of the order oc .

Finally, X is said to be a submaximal sublgttice of
L. of the order « where o is a limiting ordinal iff
X= mX’ where X’ range over all submaximal sublatti-
ces of the orders 3 < o .

We denote by ¥ (L) the family [X|X is a subma-

ximal sublattice of 1, of the order « ] and we define
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é‘(L)-KQ“ K¢y . Evidently, (L) = 3 (L) = d*'(L) .

We shall call $_(L) (resp. $*(L) ) the jterated

Frattini sublattice of the order o« and of the type
P €L) (resp. ®=(L) ). The sublattice $™(L), meN,
has been defined in [3].

Iheorem 7. For any lattices L,, L, and any ordi-
nal number o )

V(L + L) = $¥(L) + 3%(L,) ,

Qo (L, +L,) = § (L) + duc (L)

Remark. For any positive integer m  there exist lat-
tices L, M such that &™ (L) % 4, d**(L) =4 and
b M) P, O, M) =g .

In fact, it is sufficient to take L = (L’), where L’ is
the chain with Candl (L) =2 and M = L, is the latti-
ce of Fig.2.

Fig.2

1

3y 11 3nay

0 Ln
According to Fig.2, it is possible that there exist
m , m positive integer such that §, (L)= O (L) # ']

and Q“(L) = ﬂ
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However, it is not true in the case of the iterated
Frattini sublattice of the type $*(L) , as it can be
deduced from the following consideration:

If <o and PPC(L) = (L), then PP(L) con-
tains no maximal sublattice and therefore $?(L) = ¥(L)
for all o > f3 .

In [3], the problem
"Does the sequence L 2 $ (L)= $?(L)=... always termi-
nate?" is formulated.

Consider first that if 1. is a set, then the index
set I of ordinal numbers such that L2 A, R... RA F - »
el satisfies Card (1) = Card (L) .

It is obvious that there exists an ordinal number o
such that $%(L)=9%(L) for all 9 > & . But it is not
certainly true that there always exists an ordinal number
oc such that $*(L) = 4 . Indeed, let us observe the
lattice K of Fig.3 (which has no maximal sublattice) or
the L -sum of this lattice X where L is the lattice
of Fig.4 and the element x is replaced by K .

Fig.3

SEOIOAYA () )
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Fig. 4 (Cfo [31, for WI(L)< *0 )

Evidently, for the second construction the following
claim is satisfied: For any ordinal number oc there ex-
ists a lattice H such that: if «x >3 > 7 , then
3*H) § dT(H) , but for all ordinal numbers J”
O £ 0 .

A similar assertion holds for the iterated Frattini
sublattices of the type ¢, (L) , i.e.: For an arbitra-
ry lattice L there exists an ordinal number oc such
that $, (L) = (L) forall B> o .

Suppose it is not true, then there are ordinal numbers « ,

f# such that Caxd (L)= %y, 8, € « < 8 and
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P (L) #Qu(L). Then there necessarily exists a submaximal
sublattice X of L, of the order 3 such that for each
submaximal sublattice K’ of the order o« = o the in-
clusion K & X’ implies K § X’ .

Let us have the sequence of submaximal sublattices X,
of L of the order L with K; = K :

L=X, 2K, 2...2K_ 2....

If there exist two ordinal numbers £,, §, with § < §,
and K¢ = ng ,then Kg = Kg for all § > §, , therefo-
re it is Kd;axd'z for all d;,d;,a§<agfoc and ain-
ce Caxd (L) = &, < $5,, = o it gives a contradiction

by the above remark.

Summary. Let L be a lattice with Card (L) = #_, -

Then there exist ordinal numbers o , <, -

o
X, = K5, 4 and for any ﬁ>¢x4 Q"(L)=¢ﬂ(1.7,for

such that «

any g > o, ¢¢26L7=QT(L) .

6. The lattice of all sublattices of a lattice

In this chapter we shall assume that L. is a nonempty
lattice.

The lattice of all sublattices of L is denot;d by
92 (L) , its lattice operations are denoted as follows:
AuvgB=4A,B}, AngB=AmB .

YL CL) is a complete lattice with the least ele-
ment £ and the greatest element I, . Each sublattice A
such that Card (A) =4 is an atom of 4R (L) and to

- 528 -



every atom of £ (L) there corresponds a sublattice
which consists of one element. A similar relation is be-
tween the maximal sublattices and the dual atoms of
(L) .

In this section we shall study the Frattini sublatti-
ce of L. as an element of ¢ (L) .

Evidently, if 2 (L) is complemented, then & (L)
is empty, but the converse does not hold, as it can be seehb
from Fig. 5: There exists no complement to the marked sub-
lattice A in (L) +though (L) is empty.

Fige 5

If X is a complete latfice, let us denote rad (K)=
-MQ4 m (cf.[4]) (if there exiats no element m € X
such that m — 1, we put rad (K)=4 ). Obviously,
rad ($L(L)) = (L) .

We shall call an element £ of a lattice M with the
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greatest element 1 gmall if &k U & = 4 for all fe
of M, M o 4, It ia immediate that if & =< f and %

is small, then M is alao small.
Theorem 8. Let L be a lattice. Then

P(L) = nad (L(L))=,[AlAis small in f(1)] .

Proof. Clearly, if A is small in Y2 (L) , then
AsdP(L) . Let B2 A for all A small in YLCL) ,
i.e., 43:.}._ €3 for all {43  emall in (L) . As
Q(L)-[hl{h}L is amall in 2 (L)J , (L) is
contained in B .

$C(L) is not necessarily small in <£(L) as it
can be seen from Fig. 3.

Corollary 1. Let L be a latice.

If A is a sublattice of L and A is small in
S(L),then A = (L) .

If moreover nad(f2CL)) is small in 4€(L) , then
A is emall in %2(L) iff A is a sublattice of d(L) .

Corollary- 2. The following conditions are equivalent:
1) <) containa a small element different from

g,
2) nrad (L) % 4 ,

3 )+ g .
T. Ihe i £ imgl idegl lattic
Let I, be a lattice, let us denote $I(L) =1L if

there exists no maximal ideal of L, and JI(L)= AM
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otherwise, where M are maximal ideals of L .

In this chapter we shall compare the sublattices
$C(L) and $ICL). $ICL) has completely different
properties than $ (L) , as it can be seen from the com-

parison of the corresponding assertions.

Lemma 3. Let L, , L, be lattices, L, being non-
empty. Then

I(L, +L))=L +$I(L,) .

Corollary. 1) If L is nontrivially decomposable in
an ordinal sum, then @I (L) is nonempty.

2) If L is a chain, then $I(L) is empty iff
Cand (L) = 1 .,

3) If 1 is a lattice with Card (L) > 4  guch that
every descending chain of reducible elements of L is fi-

nite, then $ I(L) is nonempty.

Remark. For every lattice 1  there exists a lattice
X such that $ICK) =L . We can take, e.g.,K=L +L’

where L’ 1is a singleton.

Iheorem 9. Let L, , L, be lattices. Then

(fI(L,,xL,_) = QI(L,,) x éI(L,)

Proof. It is sufficient to realize that
a) I is an ideal of L1 x ].,2 iff I =I1x I, where I,
is an ideal of L1 , I2 is an ideal of L,_ ; 14 =
=lxel/l3yeL, such that (x,y) eIl I,
=lyel,l3xe L, such that (x,4)e 11 ;
b) I is a maximal ideal of L, xL, iff 1= I, x I,

) =

where either I4 =1 and I, is a maximal ideal of 1.2_

4
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or I, is & maximal ideal of L, and I, =1,

Theorem 10, Let I, be a lattice with 4 , Then $I(L)
is empty iff for all h €L , s =# {1 there exists an ele-
ment % &6 L,k 1 s8such that L u f = 1 .

Proof. Let (a,,&,,...]1 denote the ideal generated
by the set La,, @,,:..1 . Let hel, ha1, h &dI(L).
Hence, there exists a maximal ideal I in L  such that
(I, 5 1 =4, Then there exists an element & & 1 such
that o U h =4, o 41 , because of I & L .
et W 1, Rk 4, hude =1 .Then h ¢ (K] and
((%1, ] =L . By Zorn’s lemma, there exists a maximal

ideal I, such that h & I, and (k]S I . I, is even a

0
maximal ideal of L , hence % ¢ § Ii(L).

The proof of the following lemma is immediate:

Lemma 4. Let Card (L) >4, L  be a lattice satisfy-
ing A.C.C. Then I is a maximal ideal of 1, iff I = (a ]

for some dual atom a

Corollary. Let 1. be a lattice satisfying A.C.C. and
Caxd (L) >4 . Then $I(L)=[h|h is small in L 1.
If in addition L is a complete lattice, then

QICL)=CHM |l h is emall in L 1= Cradl(L)] .

Proof. If ) is small in 1. then Lua < 41 for all
dual atoms, i.e., £ a and s0o s e« QICL) .

If % « I(L) , then & £ a for all dual atoms, i.e.,
A is emall,
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If 1L is complete, then $ I(L)~ @(w]- (rad (L)1 .
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