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ON RECONSTRUCTING OF INFINITE FORESTS
Jaroslav NESETRIL, Praha x)

§ 1. Introduction. It is well known that every finite
tree (i.e. an undirected connected graph without cycles)
can be reconstructed from the collection of its maximal
subgraphs, maximal subtrees or non-isomorphic maximal sub-
trees (see [2,3,4]). (By a subgraph we mean throughout
this paper a proper subgraph,) N.St.A. Nash Williams pro-
posed the analogous problem for infinite trees [5]. We gi-
ve here a partial answer to this question,

A ray is a one way infinite path, a forest is a graph
every component of which is a tree. We prove that every
rayless forest can be reconstructed from the collection of
all its non-isomorphic maximal subforests. We prove even
that the knowledge of almost all graphs from this collec-
tion suffices. On the other hand, we show that the general
statement "every forest can be reconstructed from the col-
lection of all its subgraphs" is not true. This statement
being true for finite forests, we exhibit a counterexample
of an infinite forest which may be regarded as the simp-

lest example of a non-reconstructible graph, see also [1].

x) ggia paper was written while the author was supported by
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§ 2. Infinite rayless trees. Let T =(V(T),E(T)) be
a fixed rayless tree. Denote by J(T) the set of all ver

tices of T of an infinite degree. (The degree d (x, T)
of a vertex x is the cardinality of the set {4;[x ,yle
e E(T) % .) It is easy to prove:

Lemma 1: J(T)# & iff T is infinite.
Let To be the minimal subtree of T which contains
J(T). Define T, as the minimal subtree of T contai-
ning J(T,_,) . Since every tree T, is rayless we
have Ty # Tpy,4 for m =0,4,... . Further, there is
an m such that T, = £ , hence, by Lemma 1, there is
Ty such that T, is a finite tree.
Let ACT) be the group of all automorphisms of the tree
T . We have £(T, ) = T for every m = 0,4,.., and
for every £ € ACT) . Let ¢(T) be the center of the
tree T, . (The center of a tree is the intersection of all
diameters of T, recall that | C(T)| £ 2 .) Thus
£(C(T)) =C(T) for every £€ ACT) .
Hence the permutation group A(T) has analogous proper-
ties to the automorphism group of a finite tree, particu-
larly it can be obtained by {infinite) applying of a direct
sum and wreath product to a system of symmetric groups.

Let us remark that the following holds:
Let T be an infinite rayless tree, x € o (T ) (denote
by £ (T) the set of all pendant vertices, i.e. the set
of all vertices of degre.e 1). Then we have C(T)=C(T-x).
Here the tree T ~ x is defined by V(T - x) = V(T)\{x},
E(T-x) = R(T)\N{[x, x_,33 , where [x,x_ J¢ E(T).
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Denote by [T] the isomorphism type of the tree T .
Put WH(T) m{LT-x]; xe p(T)} )

In the case that C(T) is a single point, we call the
tree central. In the case that C (T) are two points
(which form an edge), we call the tree bicentral.

Lemmag 2: let T, S be infinite rayless bicentral
trees; {x,x’3 = C(T), 44,4’} = C(S) . Let TV be
the tree defined by Y(T ) = Y(T)u {ci E(T) = ‘
=(E(TIN{lx,x’13) udlx,c], Le,x’]3 where c ¢ Y(T).
Define analogously § . Then UX(T) = LK (S) iff
UX(T ) = UK (S) .

Proof is obvious since C(T)=C(T-a) a e n(T).
In view of the above lemma we can restrict ourselves to cen-
tral trees. Thus, let T, S be infinite central rayless
trees.
A branch of a tree T at a point X is every maximal sub-
tree of T which contains x as a pendant vertex. A limb

of T is every branch at C(T) .

Lemma 3: Let 2¢ : n(T) — n(S) be a bijection
such that LT -x1=[S5 - (x)] for almost all X €
e p(T). Ten T~ S .

Proof: Let V= Y(C(T),T) U=Y((S),S) where
Vi, T) =4dg;Lx,y1eB(T)5 . Let T, be the
limb of T at C(T) containing x € V , analogously
S,
(x,4) e R &> (T,,C(T)N = (5$,C(S))

. Let the relation R e ¥V x UL be defined by

(here we mean the roct-isomorphism, i.e. an isomorphism
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of Ty and S,”_ which maps C(T) onto C(S)) .

We prove that there exists an f: V — U - such
that 1) £ is one-to-one ,

2) (T, C(T)) = (Sﬂ,x),C(S)) ’
According to the Hall theorem it suffices to prove
IRCA)I =2 | Al  for every finite subset A of V (we
put R(A) =4ny,AxeA, (x,4)e R} )¢ In the way
of contradiction let us suppose |R(A)| < (A for a
finite subset A c V , we can assume that A is chosen
in such a way that B § A implies \R(B)I = 1B .
it is IR(A)I = |AlI=-1 .

We distinguish two cases:

I. (Al > 14 :
We claim (S, - a,C(S)) F (S%,C(S)) for every
yeR(A), aen(Sy) . Let aepn(T,), xeA then
there exists an isomorphism @: T-a — S - &
and @ (V(T )N a)d¢ ULV(S,); « € R(A)} (for ot-
herwise IR (A)I = |A) ), consequently
(Ty-a,C(8)) F(T,,C(S)) for every x € A and
@ € £ (T, ) . This proves the claim by the definition of
R

Let & € f (Sy), y € R(A), g:5-a — T-&
be an isomorphism. Then obviously & e V(Ty), z & A and
9(5*- a)ec U{T,; x = x € A3 . By the assumption
on A there is a one-to-one mapping ¥ : A\ {z§—> R(A)
such that (T,,C(T)) = (Sy(y , ces)” .
According to the claim proved above it is @ (g) % ‘F-q("l') s
Put gy = y¥o @ . Then . g is a permutation on the set
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R(A), hence there exists an m  such that

(x)'"'(g,): oy ,then 1 ™ _t a4 contradicts

the claim as (T,,C(T)) == (S, C(S)) = (Sy—a,C(S).
II. lA' = 4 :

a) Assume that there exist v e V and w € W such
that (T, ,C(T)) % (S, C(5))
for every t € L  and (S, ,C(S)) ¥ (T, ,C(T))
for every t € V . First, let a € £ (T) Npn(T,) then
necessarily T -a =~ S~ & and & € n(S,) . Hence
there exists a bijection @ : VN foj— UN{wu} such
that (T,, C(T)) =< (59“) , C(8N
Secondly, if a € n(TI)N p(T,) , t * o and
®: T-a — S - & is an isomorphism then
b epnl(S,) 2+ u and @(T,) =S5 \N{&}

Ty N{a}) =5, .

Since |U(=22 and IVl = 2 we have that

(5,,C(T)) =2 (T, -a,Cl(T)) == Cche,-lr,C(S)) =(T,,C(T))
for convenient @ and £ , a contradiction.

b) By I, II a), we may suppose that there exists a
monomorphism g@: 5 — T and that there exists o ¢
eV  such that (T, ,C(T)) F (S,,C(S)) for
every t e U

let @ e p(T) N pn(T,) x% o ,then T - a = S-
~%& and ¥ ¢ A (Sy) where (Sy -4, C(S) = (T,,C(T)).

But (Tcg('y.)v C(T)) = CS,,_,C(S)) 5 thus there exists
e p(T)N 4 (Teey)) 8uch that (Tq(,y,—b’,,CCT ) =

z(S,,‘-'-,(’r,C’,CF.a')).'l‘l'nen T-&'2~ S -~ &” and thus there
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exists a x € U such that (5, ,C(S)) = (T, CCTIY .
This is a contradiction.

Hence by I and II we may suppose that there are map-
pings £: VvV — U and g.: L —» V  which satisfy

1) £,g9 are one to one,
2) (Tx,C(T))c’-CS,““,,C(S)) and (S, ,C(S8)) =
= (Tg(ayy €CT)) for every x €V and 4 €U .

Then there is a bijection % :V — U auch that
(Ty,C(T)) (8, (\y, C(S)) for every x € V . (This
may be proved as follows: Put V=V \ g (ll) , then x &
€V implies (T, C(T)) = (Ty, C(T)) for infinite-
ly many different o € V . Thus we may easily construct a

bijection e.g. by h g (W)= 9,‘4 n V- identity,)

This proves the lemma. ’

Theorem 1: Let T, S  be rayless trees. Then YU X (S)=
=UX(T) iff T =85 .

Proof follows by Lemma 3, the finite case by [41.

Remark: In [ 6] there is proved a theorem on reconstruc-
ting of an auymitric tree T (i.e. a tree which posses-
ses no no-trivial automorphisms) from the collection of all
its asymmetric subtrees. The similar theorem for infinite
rayless trees seems to be harder for one can construct an
asymmetric rayless tree T such that T - x is not an

asymmetric tree for every x e fo (T)

§ 3. Rayless forests.
Theorem 2: Let S, T  be rayless forests. Then
UK(S) = UK(T) iff S =2 T .
- 508 -



Proof: Clearly one direction is needed to prove only.

let UK (S) = UK (T) . By [2] we can assume that
all the tree components are infinite. Denote by T, L < «
(SL , L < (3, respectively) all the tree components of
T (5 ,respectively). Clearly o« = [3 and we can
assume (by Lemma 2) that all the trees T , L < oo

(]

Ly L < respectively) are central.

Let ¢ ¢U{V(TL);L<«.} ¢ U{V’(SL) sL<x3 .
Define the tree T by

V(D) =V(T)uvdcl, BE(TY=E(Muile,c(T)]; L < o 3.
Derine analogously the tree g .

Then UK (T) = LK (S) implies AUK(T) =
=UX(%) . Hence T =~ & by Theorem 1 and thus

T=25 .

§4. An_example: Let T be the tree every degree of

which is o = 2 . Denoteby X UY the disjoint
union of the graphs X and Y . Then UK (T U T.) =
=UKCT,) for every o« = 2, . This is evident since
[X1eUX(T,) 1implies that X is a forest with oc
components which are all isomorphic to Tec o

In this connection we conjecture that every forest with an
endpoint is reconstructible from the collection of all its

maximal subgraphs.
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