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A REPRESENTATION THEOREM FOR TIME-SCALE FUNCTIONALS

M.J. LEITMAN, Cleveland

In this note we establish a representation for a clas‘s
of nonlinear maps on a function space into a space of set
functions. Our work is closely related to the investigations
of MARTIN and MIZEL [7] and MIZEL and SUNDARESAN [8]. As a
corollary, this representation provides a characterization
of certain maps, called time-scale functionals, which are of
interest in the study of hereditary thermo-mechanical ef-
fects., For the role of time-scale functionals in the study
of thermorheologically simple materials refer to [2,3,4,9,
10]. We restrict ourselves here to a mathematical formulati-
on.

We write R for the real line and R* for the non-ne-
gative real line., Let P denote the collection of all in-
tervals of the form [a, &) = 4{reRr'a s b < & 7 ,
where 0 =a = & < o , @and let R denote the collec-
tion of all finite unions of intervals in P . The collection
R is precisely the ring of sets in at generated by the
semi-ring P, For anyset @ c & and € e R  we wri-
t* A -6 for theset {(r-6)eR: e A 7 .
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The LEBESGUE measure (length) of a set @ « R will be
denoted by |Q |/ . By a history we mean an easentially
bounded LEBESGUE measurable function f: R% — S . The
vector space of all histories is denoted by 2 . The cha-
racteristic function of a set & = R* is a history
which we denote by La - For a history £ and a non-

negative real number ¢ , define a new history £, by

fo () =£(Hh+6), ne R[RY .

For any € e R , we write 6% to denote the constant

history with valuye 6
9 (B)= 86 - A € .'ﬁ;+ .

Here the term glmost everywhere means except for s set of
LEBESGUE megsure zero. See [5] for set- and measure-theore-
tical terminology.

Throughout this note we are concerned with a map
£ |- “s which assigns to each history f € o a non-
negative set function «; defined and additive on the
ring R . We call such a map:

local if,and only if, for each @ « R

((4,;(0;) = @u(al) ’

whenever £y a= %1, almost everywhere;

iranglation invariant if,and only if, for each Q1 e R
and 6 e R

@p(Q) = @p (Q-6)
provided ¢ is such that Q-6 e R (Strictly speaking, we

define here only left translation invariance, since this is.
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sufficient for our purpose. The r8le of translation invari-
ance in the investigation of hereditary phenomenae has been
considered in some detail by COIEMAN and MIZEL [1] and
LEITMAN and Mizel [61;

continuous if, and only if, for each @ € R

M;@(Q)—-) “s (Q)

as m - o , whenever f, - f a8 m - oo boundedly.al-
most everywhere; and

non-vanishing if,and only if, there is no history f €
€ # such that @, vanishes on R .

For such maps we have the following

Representation theorem. A map f|— @, which is local,
translation invariant, end continuous is completely characte-

rized by & uniquely determined non-negative continuous func-
tion ¢ on R . This characterization is realized throu
formula

(%) Mca)= _j;'?(£(/.s))d,/e p,

where £ @ and Q € R . Furthermore, the given map is non-
venishing if,and only if, ® is positive on ® .

Proof. Let .99 be a non-negative continuous function on
R .Then for each history £ € 3¢ , the formula (% ) certain-
ly defines a non-negative additive set function g on R .
The map £|— @, thus defined is easily seen to be local
and translation invariant. That it is also continuous follows
from LEBESGUE s dominated convergence theorem.

Conversely, let the map £|— « £ be local, transla-

tion invariant, and continuous. Then there is a non-negative
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continuous function ¢ on &  such that

@es €Q) = 9(8) 10l

for every 8 € R and Q@ € R . Since it suffices to ve-
rify this assertion for intervals QL e P , we let Q0 =
=[a,%) where 0 =a = & < oo . This translation in-
variance of the map 6% |— w,. and the fact that
9:, = 0% together imply

(u,a,f[a.,b')i = (4,9‘,.{[0,.0:—- a)i

or, equivalently'

@o+ (Q) = @ya (L0, 1Q1)) .

Suppose that || is rational. Then by repeated use of the
previous argument and the additivity of wgt it follows
that

Uge (L0, 101)) = @ge €O, 40 10 -

But this formula holds for all @ € P . Indeed, if {Q| is
not rational, choose an increasing (positive) rational se-
quence fc, 3 and a decreasing rational sequence id, } such
that each has limit |Q /| , From the monotonicity of the set
function w ot we conclude

g+ CL0,4)) e, = @ae(l0,c,)) £ @wose (L0, 1Q1))

& @gp(L0,d,)) = @oyCL0,4)) dy

for each m ., Hence, letting m — a , we obtain

“g+(L0,42) 1A £ @ge (LO,101N < @y, (L0,4) Q] .
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Thus, for any set & e P , we have shown that

‘a.ofca,) = (‘L0+(£ 0,4)) vl

Now define @ on R by
P(0) = @y (L0,4)), O R .

The function ¢ 1is clearly non-negative. To see that it
is also continuous, observe tha‘t 9':—» 8t as m > 0 im-
plies 6:; — 6% as m — o boundedly almost everywhe-
re. Hence, the continuity of the map 8t 1— e+ 1implies
that @(6,) — 9 (6) as m — o . The assertion is ve-
rified.

Let % Dbe a history which is simple with respect to

R ; that is, & may be written as the finite sum

N
ho= 23 1,
=1

where -(64_3 is a collection of N real numbers and fazif
is a collection of N mutually disjoint sets in R . The
local property of the map £ |— “ ¢ together with the
additivity of @, implies

. N N
w4y (V) = 2 90801000 l+ 90 I0-U a1 ,

for each U € R . For any history £ there can be found a

each simple with respect to

sequence of histories {f, 3% ,

X , such that £, > £ as m - oo boundedly almost

everywhere. Moreover, for each simple £, we already have

@, () = J;'qa (fp (AN dA ,

for every O € R . The continuity of the function ¢ and
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the continuityv of the map f |— “s together with LEBES=-

GUE s dominated convergence theorem then imply

{L;(Ql)lm% (ufm.(a,): m,g‘;mpx j;QCfn(/a))db =

=4m9cf,‘ (eNds= [ @ENds
for every O € R, The function ¢ is clearly uniquely de-
termined and the characterization is established.

Finally, it follows from the definition of g  that
the map f|— @, 1s non-vanishing if and only if ¢ is

positive. The Representation Theorem is proved.

Remark 1. For each history £ , the set function @
on R is seen to be absolutely continuous with respect to
LEBESGUE measure. Hence, @, is countably additive on K
and, by classical arguments, possesses‘a unique extension

to a BOREL measure on [t .

Remgrk 2. It may be shown directly that a local map

£l— @, has a geparate additivity property closely rela-
ted to that considered by MARTIN and MIZEL [71: for each

set L eX ,
6“4(0’)"'(‘%.(0')°G"«F+u(a'>= o+ wy ,

'wheneve'r £ and % are histories with separate support in

Q ; that is, £ky, = 0 almost everywhere.
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Remark j. If, at the outset, the set functions e we-
re assumed to be real-valued and countably additive on R ,
then our results carry over to signed measures, with the ob-
vious modifications. We thank Professor V.J. MIZEL for this
observation.

In order to explore one of the consequences of the Re-
presentation Theorem, let £ |— “ ¢ be local, translation
invariant, continuous, and non-vanishing. For each history

£ , define a function ¥ on R* by

(k%) Fe(§) = @ (LO,§N

5f§ PEMBNAs, § eR’ .
0

The function . is a monotone increasing map of R* onto
R!* . To see this, observe that, since @ is positive, f-f;
is continuous and monotone increasing on RY . Let ce be
the essential supremum of |£| on R*. Since ® 1is positi-
ve and continuous on [-ce,celc R it attains a positi-
ve minimum end maximum, say, mg and M ¢ on this interval.

But then
ﬂWLf § - ﬁf{ (S ) = )dfs
for all § e R* | so that 3’; maps R* onto Rt .

By direct computation, the map £1— ¢,  can be shown
to reflect the properties of the map £ |— ¢ ¢ . Thus, the
map £ 1— ¢, satisfies:

(1) (local) for each § e A*Y ,

I (§) =S (§)
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whenever f;(‘m’g) = ‘.""M:o,f) almost everywhere;

(ii) {continuous) for each § e ]t ,
(
9,m(§)-+ g (§)

as m -» co vwhenever £ — £ a8 m — o boundedly al-
most everywhere; and

(iii) (additive) for each § & A" and € e Ry ,

g, (§re) =S, () G (§) -

A time-gcale functional (See introductory remarks.) is
amap £1|— 94 which assigns to each history £ e & a
monotone increasing map ¥ of R* onta R* .

The Representation Theorem has the following

Corollary. time-scale functi 1 may be character
by a uniquely determined positive continuous fupction ¢ en
R ihrough formula (kx) if and only if, it is lecal, conti-
nuous, and additive (propertieg (i) - (iij)).

This conclusion follows from the Representation Theorem
upon observing that a time-scale functional £[— Sff indu-

ces a (non-vanishing) map £ [— @, according to

GL;(EO,,‘J’))- ff.,(!r)—‘.'ﬁ,;(w) 3

where 0‘5 a = & < c0 , Furthermore, the properties (i),
(i1), and (iii), defined for £1— ¥, , are equivalent to
locality, continuity, and translation .invariance defined for
£l— @4 - That (i) is equivalent to locality and (ii) is
equivalent to continuity is obvious. Finally, to see that
(1ii) implies translation invariance, let 0£€ @ <a < &< 0 .
Then
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(Lo, b)) = % (&)= %, (a)

ff_’.((lr-S')+6)— 5”4.((0,-6)4-6’)

S (8)+ ff’fe(fr-e)- fg,(e)— :q’,s(a.-a)

.‘f,cw-a) - 3’,6 (a -6)

= (uf(Ea.-G,‘b'-e')) .

Conversely, property (iii) can be deduced from translation
invariance by setting 6 = @ and reversing the previous

argument.
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