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ON THE ITERATIVE CONSTRUCTION OF A SOLUTION OF NONLINEAR
ELLIPTIC BOUNDARY VALUE PROBLEMS

Walter PETRY, Disseldorf

Introduction. General existence theorems for nonlinear
elliptic boundary value problems for operators of the form

Aw): = Z - 1)'D%A_(x,,Dus,..., D™ )
x|l &m

are considered in several papers (see e.g. [1-5, 8, 9, 11-
131). The operator A(w) 1is studied on a closed subspace
V' of the Sobolev space Vﬁn'ﬂ_(ll) s, where (1 is a boun-
ded open subset of R”’, m Z 1 , The existence theorems
are based upon different methods and different assumptions.
In [1, 2, 5] the theory of monotone operators on reflexive
Banach spaces is used, while in [3, 4, 8, 9, 12, 137 the mo-
notonicity condition is replaced by a weaker agsumption.
Browder considers in [3, 4] noncoercive elliptic boundary
value problems, while all other cited papers assume that the
operator A satisfies a coercivity condition. Furthermore
there are different growth conditions on the functions

Ay (X,4,Da,...,D™u) with respect to ..., D™u .

All these existence theorems are not constructive.

AMS, Primary 35J60, 49D10 Ref. 2. 7.956, 7.962.5
Secondary 47H15
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For operators A of order 2m = m an iteration
process is given by Koselev [6] and in [7] Kratochvil
studies a similar iteration method for operators A being
a potential operator. In both cases it is proved that the
iteration sequence converges to the unique solution of
the elliptic boundary value problem. It is assumed that
the operator A is monotone and coercive and the func-
tions A, satisfy restrictive growth conditions.

It is the purpose of the present note to apply the
general iteration process studied in [10] to nonlinear el-
liptic boundary value problems on the space Wm,a . It
is assumed that A is a potential operator which must not
be monotone or coercive. The functions A_ (x,u,..., D7)
satisfy less restrictive growth conditions. It is shown
that the iteration sequence converges to a solution of the
not necessarily uniquely solvable nonlinear elliptic boun-

dary value problem.

2. In this section we will state the assumptions, so-
me known results on nonlinear elliptic operators and the
general iteration process studied in [10].

In the following we shall use the usual notations
(see e.g. [3]). We introduce the notations: Let §, and
% be the vectors {f :lwlemi, 6 {g :laclem-1}
and 4 9‘ ol =m 3 respectively, from the spaces

p i

$m- =
X*™* ena R*™ *m-1 respectively.

? ?

Furthermore we assume that () is a bounded open

subset of R™ with sufficiently smooth boundary &.0
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such that the Imbedding Theorems of Sobolev hold.
For functions u (x), o (x), defined on £l a.e., we set

(w,v) = Jflu,(.x) r(x)dx , where ‘.fn. denotes the
Lebesgue integral.

We will study solutions of nonlinear elliptic bounda-

ry value problems on the Sobolev space Wm_’ 2 -+ By

{ar, w > we shall denote the value of wr e Yof,,‘,",_,,_ at
(-}
uweW,, -

For each o, A is assumed to be a function from )

s
=R ™ to R' satisfying the following conditions (s.[3)):

Assugption A: (1) A, is measurable in x for fixed
§ e R®™  and continuous in § on R®™ for almost all
X € fL , Let & be the greatest integer less than 2 —
-m/2 ,and §7 denote the vector {lf l:lcl< &% from

Ki"" . There exist continuous functions Cx and c, from
17,
R:"’ to L*(fl) and R:_ , Trespectively, such that

+ + Fup
My (2, §1 £ 0 ()4 o (f"’)m-m/nélllltm 'fa!

with the exponents 1, and f «p satisfying

P = 2 f0r lxl=m |,

p,a>5:‘ for lxlelm-m/72,m [ ,
1/s,=1/2-(m -lx)/m
/8, + 1/s, = 1

p.=4 for lal e [0,4]

?

?

b

d
an fy‘ﬁi" for l<) = I8 =m ,

P < 85/8% for Il 1Bl e lm-m/2,m],
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lal+ Il <2m ,

Prcps £ s, for lxl e [0, &] ,
1ple lmem /2, m1 .
(2) For almost all x € £ and each 7 « S
let = (A _(x,79,9)-A (x,7,¢") (g - 9)> 0

ft, =m

ftor @+ ¢
(3) There exist continuous functione c, and c from
Sgy 4 ~
R to R* with %‘&’ZCRO for all §,:={§_ :

:lcl & &3 such that for almost all x € f. , all ¢ and

Ul we have
t

2 + »
2 A1, PP T ) IPU-C 8L 2 s8]

|

with tp < .sp

$m. 4 S
(4) F: xR ~—> R . For each fixed §€R

F(+,§) 4is measurable on (1 . For almost all x € . ,
F(x,+) is once continuously differentiable with g%— =
oc

= Ad . Furthermore let

S
1P (x, §)) £.c, (63 )+ ¢y (E) p*

/m-m/%n 181 m | §a &

Ser

where ¢, and c, are eontinuous functions from R - to

L*(Q) ana RI

respectively.
(5) For each o and almost all x € O , A_(x,-)
is once continuously differentiable such that

A (x,§) + P
lA—ggn-'ilé &p (SR (g)) -

> |
m-m/25 g lem Sr ?
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where the exponents satisfy with g ., : = s, /s, , ’l/(;“/3 +

+ 1/‘7:‘[3 = 4 the following inequalities
fapy = Sy /(s 9Lp) for lxlIpllyle (m-m/2,m],

Papy = 9py Tor IBLl7Ielm-m/2,m], lx|l<m-m/2,

Papyr = Gay for lecl, lrlelm-m /2, m]

2

Ipl<m-m/2 ,

Papy = Sy for lyleflm-m/2,m 1, l«xl,I3)e [0, &]

and ¢ P (d , respectively) is a continuous function from
S"’ sl ’
K+ to L™*%P (q) for lxl 1Blelm-m/2,m],

to L% (0) for lcl e flm-m/2,m 1,13 el0,%41,

to L°" () for lecle (0,41, Iflelm-m/2,m] ana

to LA(Q) for lwl,Iple 0,41 (R

+ respec-
tively)-

Assumption A (1) - (4) is the assumption of Browder [3]
(£ = 2 ), where the following Lemma is proved:
Lemmg 1: Let Assumption A hold. Set

eC
& (w,n); ='d’§m (A G, §u)), D v) |

gu): = 'A/’;F(x,f:(w)(x))d.x

Then it follows:

L)
(a) There exists a bounded continuous mapping T: W,m -

2

[ )
~~>1ffm::g_ , such that for all &, v € Wm,z
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aluw,v) = <Tw, »> .

Furthermore T satisfies the condition (S¥): If for any
[J

sequence 44,} in WM,Q_ converging weakly to « in

o

V,

—_ such that %nmwf»(Tu,,-Tu,u»—u)é 0,

©
it follows that {u,v} converges strongly to « in Wm, q

o
(b) g is a once differentiable functional in W, , ,
and its derivative 9,' satisfies

9.’(44—) = T(u) .

(c) For each R = 0 there exists a constant LR> 0

such that for all w, v € Ky =fu: lulsR3

ITw - Tl = L b -l .

Procf: The assertions (a) and (b) are proved in [3] using
assumption A (1) - (4), while assertion (c) follows also as
in [3] by assumption A (5) using the Imbedding Theorem of Sobo-

lev.

The usual norm in W,

m, 2 is equivalent to the norm

Iwﬂmﬁ::(“lz.m (.‘D",a, DZuN??  (see e.8.[7]), which shall

be used in the following.

We need further
Assugption B: There exist %eﬁm’z,v> o, P>0 -
such that for all
ueK,,,’;=fue‘:fmla:mé luw-wv, < r+p?
it followa
S (A Gy w)), Du-20>0 .

Il £m
Remark: Under the assumptions A and B the mapping T de-

fined by Lemma 1 is not coercive.
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If we assume the coercivity condition
Assumption B : Let exist a constant a, > 0 .and a
function a, € Lcqa) such that for almost all

S
x e 0 andallgeﬁm we have

S AL, )8 2algl®-a,x),

Il €m

then we have the following
Proposition: Suppose that the assumptions A and B” .

hold. Then assumption B is also true with A

= 0, P >0
arbitrary and s sufficiently large.
For our iteration process we need the following Lemma

(see €e8e [5], § 8):

Lemma 2: Consider the differential operator
Bw):= (1" = D*™u
<l = m

and the bilinear form

S (D%, D) .

lu,w): =
Jet| = m

Then it follows:

o
(a) There exists a linear bounded operator S: W, _ _—

m,a
©° * o
>W,.,o 8uch that for all «, # € Wy o
- KSu,v > = rlu,n») ,
(s Y= N Sul®  lacl , = Nawl?
Lyt “lm,a m,2 = m,2 °
[-]

(b) For each w;, e Wm’:,z there exists a unique

L]
wy e W, ,  such that Su, = w .

We will now state a special case of the general itera-

tion process studied in [10].
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Let B be a real Banach space with dual B* , and denote

by {w, 4> the value of' wr ¢ B¥ at w e B. Let

7, € B and set

X

w:=4iueB; lu-yl<ri,

K,"yz ={uweB; velu-mlsx+pi ,

Kesgt =fueB; lw-v,l< n+pt .

By K,u and -K,“, we denote the closure of K,b and

)(M_’ , Trespectively.

We assume

Condition I: (a) Let f: neg = B* satisfying

rupy NE(u)l=sM

“ e Rn—f?
with suitable constant M > (0 . Let there exist a con-

stant 1, > 0 such that for all &, € X it fol-

ks
lows

NE(u)-f(w)l € Lylw-nr Il .

(b) Suppose that ¢ is a linear mapping from B to

B* possessing an inverse on B* such that for all w €
e B*
he="Cuw)ll € L llaurl

with suitable constant I, > 0, Set
*. i 1
"‘L ! == ﬂwf(m 9 LLD) .
Condition II: (a) There exists a functional g on
X +o ) possessing a linear G&teaux-differential

g (u,n)=<qg («),#> such that 9: () = - £(u) .,
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(b) There exists a constant c, = 0 such that for

each o « B*

2
S, g~ Caw)d 2 ey llarll™

~ ; * _Co .
Further let 0< & < ki = inf (%, L,L"‘)

Condition III: Let fh « [O,Iu] ,VE K,L and sup-

pose that « f,“q, satisfies

Pw) = ¢ (w)+ hf(uw),

then it follows w & f,"? .

Condition IV: Let {u, (= —sz such that £ (u ) —

— 0 . Then there exists a subsequence 1 “y,, # and an
element « € j(m such that Ay, converges strongly to

« and £(w) =20 .

We may now formulate

Lemmg 3 (s~ [10]): Suppose that the conditions I - IV
hold and let «, € X, . Then we have:

(a) The nonlinear problem

Fluwy, )= Flu)+ hfla,,,)

has in the ball 44 € B: llu.—,a.,, l< @3 a unique solution

@ which can be obtained by the following iteration

Y+4
process

9’(“,;’1:*,4):9(“,,)4-9;{(‘0’,";) < =0,4,2,,.,’. » fixed),

u.,,,a = .lbv .
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It follows wu, € K, .

(b) The sequence {«,3 - uniquely defined by (a) -
possesses a subsequence {u.,,, ¥ which converges to some
w*e X, osatisfying £(«u*) = 0 . The sequences

{u 3} (fe=1%4,+2,..) then also converge to «* .

ik
Each limiting point of fu 3} is a solution of £(w) =

=0 .

(¢) If £(w) =0 hasin K, only isolated solu-

tions, then the whole sequence {.,} converges to w¥*
»

3. In this section we will now state our theorem on
the iterative construction of a solution of nonlinear el-
liptic boundary value problems.

We apply Lemma 3 to the nonlinear elliptic boundary
value problem. Thus we set

B: = Wm,z , B*: = ‘,,:,2 y Fw)e= - T(w), @(w): = Sw)

and consider the following iteration process

(1) sw,ﬂ)asm,)-wrm,ﬂ)
and
() 8 Qa4 0= SCuy) - T, ;) (i=0,4,2,.. 5 fixed),

My,0 = Ay
to construct a solution of
(3) Tu = 0 .

By Lemma 1 it follows that (3) is equivalent to

W alu,m)r= A, §W)), D)= 0
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(]
for all v € Wy, o , i.e. (3) is equivalent to a weak

solution of the nonlinear elliptic boundary value problem

L1
G DA (%), ey D)D) = 0 tor

xel,
(D*w)x)=0 for xedf, lxle m-1 .

We can now formulate

Theorem: Suppose that assumptions A and B hold. Let
L)
o€ Ky :=fuweW, ,:lu-w, lm,o<n 3 . Then there
existsa constant f, > 0 such that for O< #2 < $2 the
following holds:
(a) The nonlinear problem (1) has in the ball

o
{u e wm,a. : Iu—u/,, "m,z = o ? a unique solution

My, satisfying w, € X, , which can be obtained by
the iteration process (2).

(b) The sequence {w),} - uniquely defined by (a) =
possesses a subsequence {u,», ¢ which converges to a solu-
tion w* of (3) (i.e. (4)) satisfying «u* e« K, . The se-
quences fa o3 (h =14,%22 ,,.) then also con-
verge to w¥ . Each limiting point is a solution of (3) (i.e.
(4)).

(¢) If (3) has in I,,, only isolated solutions, them
the whole sequence {4,} converges to w*

Proof: We apply Lemma 3. The conditions I(a) and II(a)
follow by Lemma 1, while conditions I(b) and II(b) follow by

Lemma 2. Let # > 0, ¢ X, and suppose that
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— o
.«,«;K,H_“,:='{u,e1‘fm’2:lla,-rz»‘;,l,,n,2 £ e+t

satisfies
Sw) = S(wr)- T (w)

then because S5 is linear we obtain by Lemma 2 and assump-

tion B

2
lw -l

5 om0 = {Su-v),u-v>=<S(w-u,), u-7,)>

- BT w), u-

< lar-wplly, o M-yl s <n -, , ,

proving # € X, , i.e. « ¢ j(-,‘,,, . Condition IV fol-
lows by L.mma 1l(a). Let {u.,? c f,b such that T (« )
~ 0 then by the reflexivity of W,m, ’ there exists a

subsequence {4 __ 7 converging weakly to some & . Thus we

»s
have

%Mm (Tla,, ) -Tw),u,, ~ud==T(u)u-u>=10.

Hence by Lemma 1(a) {uw,, $ converges strongly to . , i.e.
“w e J_C.,L . By the continuity of T it follows T(w) =0
proving Condition IV.

Remark: (a) The iteration process (1),(2) is rather com-
plicated because it consists of a recursive sequence of ite-
ration processes, but the assumptions are very mild. Further-
more one has only to solve a linear elliptic differential
equations with constant coefficients of order 2m .

(b) The application of a slightly more general form of
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Lemma 3 to nonlinear ordinary differential equations with
boundary conditions is given in [10] without the assumption

that the differential operator is a potential operator.
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