#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1972
PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0013|log46

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de

http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

Commentationes Mathematicae Universitatis Carolinae

13,3 (1972)

ALGORITHMIZATION OF ALGEBRAS AND RELATIONAL STRUCTURES

Karel CULfK, Praha

The simple and natural concept of algorithm over a re-
lational structure is introduced which is an essential ge-
neralization of the traditional concept of term and is re-
lated to the concept of program in programming languages
for computers. The individual operations of the relational
structure correspond to elementary algorithms and the indi-
vidual relations of the relational structure allow the bran-
ching of the algorithm. Branch equivalence of algorithms is

introduced.

1. Relational structures with relations in 4 -valued
logics

A relational structure is determined 1) by its set of
objects Olvj,'sh &, 2) by its set of operation Opr ,
when an m -ary operation £‘* & O , where m = { , is
a function such that @4 Domain £™ c dbi™ and
Ramge £ c 0% , and finally 3) by its set of rela-
tions Rel , when an m -ary relation 97"")5 Rel , where

m = A , is characterized extensionally by the requirement

AMS, Primary 02510, 68405 Ref. Z. 2.657 8744
Secondary 68420, 08A05

- 457 -

Fikd 9,('”) c 0B4™ . The equality relation " ="
belongs to Rel always.

It is tacitly assumed that each gf"‘) € Rel is an
m =-ary relation in the usual 2 -valued logic, which

) may be considered as an m -ary func-

m

means that g
tion such that Domain g.‘m')= oty and Range g,‘”) c

c {true, false} , where true and false are the two truth
values of the 2 -valued logic, which should be different
from all objects of the relational structure.

Therefore a complete characterization of the relational
structure should be as follows: < (%], 4 tuw,false },0me, Rel),
where in fef are functions of certain sort also; thus

we call such a structure an algorithmic algebra.

If we assume for a moment that for an arbitrary A =
=2 ,that (41,2,..., &) is a fixed denotation and orde-
ring of all £ truth values of &R -valued logic (the truth
value should be distinguishable from the objects), then an

)
m -ary relation in A& -valued logic ?‘:;) may be con-
: (m) :m
sidered as a function such that Domain Yy = 0% and
Range 95:2) c4£4,2,..., &3 , which is characterized

m) n) wm))

extensionally by the sequence (g 1", @5 ; *** s Gge

of length S such that:
.) o s
(1.2) %‘:"E oy qim n q.(; =f forall 4,5=4,2,..0,%,

))
mu%#é,mde$=%m;

(1.2) gy (00, Gp) = 4 &= (0,,..0,0,) € ¢,

- 458 -

where 41 £ 4 £ S , for all 0; € 0by and each 3 =
=1,2,..., m .

For example, if we identify 4 = true, 2= false
and q‘(";; = @™ . then according to (1.1) tb- stion
g,""') ‘in 2-valued logic) ia charac® .. _ ae fol-
lowing sequence: (Field g’ OBL™_ Fietd g™’ .

Everywhere further in an algebra it will be admitted

’

that there are particular relations in % -valued logic for
many different values of % . Moreover it will be admitted
that the operations are partial, and in fact, also partial

relations may be admitted.

2, Eprichment of the language of terms

Ignoring the quantifiers, an axiom of an algeora is
usually the following string of symbols: T,, =, T, where
T1
equality relation from Ref . The terms are defined, using

a set Yax of symbols called (individual) variables, as

and Tz are terms and " =," is the symbol of the

follows: 1) each variable is a term; 2) the string

£ (X, ye0ny Xy) is a term (called elementary) if
x. € YTax for 4 =4,2,...,m , and "£‘" g the
v

symbol of an operation from O’M 3 3) the atring
£“'"’(T1,...,Tm) is a term if T; is a term for
is4,2,..., m , and " £“Y" ig the symbol of an
operation from Ofur (usually for m = 2 the string
(x,, £m)x2_) is used instead of the string

£22 (x,, y X,)). Obviously the set Opr must be

2

- 459 -

distinguished from the set Symb (v of symbole of
operations from (vt .

Each term determines an algorithm, i.e. a complete
prescription for the consecutive application of opera-
tions from Opr , in a familiar way, which will be re-
called by the following example in numerical algebra. -
The term T = ((x-4), ~ (g +2),), , all the right-
hand brackets of which are labelled by mutually different
variables not occurring in it, is transformed into the
algorithm

(2.1) AL =(x-g=:t; y+z=17, t/v=:a) ,
c, c, Cs

where three applications of operations C1 . Cz and C3
(separated by semicolons) are distinguished and called ope-
rational rules or commands, and " =: " is a new aymbol
(called assignation in programming languages). The com~
mands are executed consecutively from the left to the right.
The above mentioned transformation of T into A.,. is
unique if the following requirement is accepted; always the
left most possible occurrence of operation must be applied.

Without this requirement one may get an other algorith
(2,1%) A‘!‘r-(9+z==v; x-'y-=:t,t/1r=:w) 2

An algorithm of operational commands (as a prescrip-
tion) is used as follows. An operational command C is,

in general, the following string

(2.2) CmilE™Cxpyirrg gt =iXg) ,

where on the left, right hand side of the assignation is
an elementary term, a variable, respectively. If some va-
lues (i.e. objects) of the variables x; , 1«41 &m ,
are prescribed, then it means that a function & e Oi?g',ﬁ'"',
called (initial) state, is prescribed, such that 6 (x;)
is the corresponding value=object. The operation £ (o)
should be applied to the prescribed values of X , X,,...
ooy Xpm, and the resulting function value

£ (@ (x), T(X)) e, 6(xp)) should be as-
signed. to the variable Xo s which means that a new (re-

sulting) state 6*= C6& is determined as follows:

6% (X)) = £™ (& (x,), 6(x,) .00, §(x,))
(2.3)
G*(t)= 6(t) for each t ¢ Yar such that t % X, .

E.g. in the example (2.1) let us start with the in-
put state 6, e 0 T2 such that &, (x) = 410 ,
6,(y) =1 and 6, (z) = 2 (the remaining variables
do not matter'), i.e. the arithmetic expression
((40~4) ~ (4+2)) ahould be evaluated. Then according
1 for
i=4,2,3, and G ,(a)=6,(x)-6(g)=40-1= 9,

to (2.3) one will get consecutively: 6, = C, @} _

6, (&) =& (y)+6(x)=0,(g)+ G(2)=4+2=3 ,

and 6’3<c) - 6',_(@)/6’2(.0) = q"(a,)/Gi(b-) =9-/3=3.

- 461 -

We stopped with the output state 6; .

Two terms T; and Ti are equivalent if there is a
one-to-one mapping @ of the set of variablea of T, on-
to the set of variables of T, such that after replace-
ment each occurrence of a variable x in T, by @ (x)
the term T, arises from the term T, .

The variables X, 4, = (which occur in T) are
called input variables of the algorithm .A1_ , and the va-
riable ¢ (which does not accur in T) is called the
output variable of A, . The algorithm A ia abbrevia-

ted by a single generalized operational command
(2.4) Ar(x, g, 2)=:c ,

where on the left, right hand side of the assignation oc-

cur all the input, output variables of A respaectively

T
(their ordering is unessential), and A, may denote e
composed operation F ¢® , i.e. Domain F® CI'&;',"
and Range F® © 0% , usually denoted by the original
term T , which is determined and evaluated by the algo-
rithm A‘r with respect to all possible input states and
the corresponding output states.

The enrichment of the language of terms, which was
necessary in order to be able to express the algorithms of
operational commands, is rather simple. On the other hand
the language of terms itself is unsufficient, because a
lot of composed operations used in numerical algebras can-
not be expressed in it. The simplest example of such com-
posed operation is the absolute value Ix! , defined usu-

ally as follows:

- 462 -

=X for.xz(),
@5 1x1=<_

=-x far x < 0,i.e. for x which
does not satisfy x = 0 ,where "-" ," =" gng "< "
are well known symbols of operations and relations in nu-
merical algebras. It is clear that the relations must be
taken in account and the branching of algorithms must be
allowed and uniquely determined.

3. Conditions

First of all all the truth values required in Sect. 1
are superfluous and may be forgotten, because they may be
replaced by the variables as follows. If 9.‘(':; € Rel

and [a ,a,,..., a,] is a k-tuple of variables, then

m)
let 9‘:41.,, @gserer Al be a function, called f -valued

condition (derived from the relation in e -valued logic

9?:'), by Yar), and defined in accordance with (1.2)

as follows:

(m)

(3.1) ?E%"“”_“’%J

(0,,00y0p)=a; , where 1% i < &,
if 4 = 9’2’:’; (04y005 05,) , where o; € 0% for each

dm 4, 2,0, m .

m) . m
merofortz“l:omain Q'Ea.,,az,m,az.: = 0% and
Range 9'5“\1r°'27"'7 a3 € fay,29,:00,a9 1
Let Ret [Var] De the set of all conditions derived from

Re¢ by Var . Now a complete characterization of an

- 463 -

arbitrary algorithmic algebra is as follows:
<085, Var , Of, Rel,,y., 17 , where the truth values are
omitted, although all relations in % -valued logic are ad-
mitted for each M =2, 3,... .

m)

A % -valued condition Fra, o ragl ? where
a, * a; for +{+3 and 4,3 =1,2,..., & , allows the
decision making among & possibilities, and therefore
this is a suitable tool for the determination of branching
algorithms (it is assumed A = 2).

On the other hand if a, = a; for i,3=1,2,..., %,
there is no decision making, because only one possibility
is admitted. Such a degenerated condition determines no
branching (and it could be replaced by its single variable
@, vhich ia its value independently on the state).

The string
wm)
L

(3.2) C = gr (x,,,..., Xn) ?

SR 0‘“1
h) Rel and x, @ Yar for 4
VAT Fragr-rvged € Lvax] X3 S
=14,2,...,m , is called decision command (it corresponds
to the elementary term over the operations and if m=/f = 2
then it is replaced by the following string

"x,,gfa).x “). It & e 04" is a (current)

2ra,,a,1
State, then the execution of the decision command (3.2)

means only the determination of the resulting variable

)

VCaysry aged (BCx) ,e0ey 6Cx,)) €4ay, 2,0, a3,

and does not cause any change of the atate @ .,

- 464 -

Eeg. " Zpa,,a,1 (%5 y)" or'x Zap, a,," is a
decision command and if 6(x)=4,6(g) =2 , then the
resulting variable is a, ,etcs

It is convenient to have the stopping command STOP,
the execution of which means that no further command may
be executed.

In order to make the further considerations easier let
us distinguish two sorts of variables: the labels from éh@r
and the proper variables from PVar , where &al u Plar =
= VUar and &alr n Var = £ . Then in the decision command
(3.2) always a; e falr for ¥ =1,2,...,% and x; € Plar
for 4 = 4,2,,", m . Thus the algorithmic algebra is cha-
racterized by < ¢y , PUar , O, Rel ., 01> . Let Com
be the set of all commands over this algebra, where we add

(for rather formal reasons) the following strings
(3.3) =:n , where x,y € Plar ,

which are called restoring commands. Obviously the resto-
ring commands correspond to the identity operation in U(.; .

Further let us add the following strings
(3.4) O=:n , where oe 0%, 4 € Plar ,

which are called input commands and which correspond to the
constant operations. It is assumed that OBj is the set of
symbola, which may be written here and which do not denote
anything further but only themselves (it is superfluous to
distinguish between the number 2 and the numeral 2 ; he-

re only the numerals are concerned).

- 469 -

It is convenient to include the restoring and the in-
put commands into the set of operational commands, and it
is clear what change of state is caused by them.

The particular commands may be considered as the ele-
mentary algorithms and the main question is how to compose
them in order to get all possible algorithms over the al-
gebra under the consideration.

The occurrence of a proper variable on the right hand
side of the assignation in an operational, restoring or in-
put command is called the defining occurrence and all other
occurrences of proper variables in all sorts of commands

are called applied occurrences of proper variables.

4. Algorithms over an glgebra

A finite (totally) ordered set A =(K‘..., K™) or
pairs KV =< & %> | where £ e Labr, C¥e
¢ Com and

(4.1) &Y 4 4% for i 44 endi,g=4,2,..,N,

is called algorithm (or program) over the algorithmic al-
gebra < O0®5 , PUar, Gpn , Re€py, o ,> if there exists at
least one branch of A , which is defined as follows.

A finite sequence B = (X,,K,,..., K,) is called

n
a branch of the set A , if the following requirements are

satisfied:

=
(4.2) (i) K’asj(‘;‘ for each 4 = 1,2,..., 2 , where
1< 4. « N ;

2

- 466 -

(ii) K1 = K“) $

(i) X, = K where €’ = ST0P ana 1 <
<i<N,;

3 . 3)
(iv) if K, = K? where 1 <4 <, then C¥4
4 STOP, and if C% ig operational, then 1 £ 4 < N
(3+1) : @) _)
and K£+4 = K 2 b but if C o= 9‘“’1""’%’ ("‘4’"'1“@)
is a decision command then there exist integers ~ , .
14n & % , and h,145 £ N such that &Pz,

)
and K-L«M"K ;

(v) there exists i ,1 €4 £ o such that K; =
= X% where 1«43 « N and C% is an operational

command, which is not an input command.

The finite sequence 0B = (C_,;_' , C_;,z,..., C;_g’) is cal-
led operational branch of the branch B of A if 0B
arised from B by omitting of

(4.3) (i) all labele &’ 4 < i <« N ; and

’

(ii) all decision and stopping commands (and all su-

perfluous brackets and commas).

A proper variable which occurs in the branch B , i.e.
in a command of B , is called input, output variable of B,
if its first, last occurrence in B respectively, is the
applied, the defining occurrence, respectively. Let J"""B N
UMB be the set of all input, output variables of B,
respectively. Obviously Unpg+ f % 07444’4»5 . A proper

variable, which occurs in an input commend of 3 , is

- 467 -

called a parameter of B . Let ﬁu,s be the set of all
parameters of B .
Let us define
(4.4) Infr, = U Imp,, Outp,= U Ouwtn R, = Tary
* A" Bebn, B’ A Bebuy, B’ A Beby,
where B/LA is the set of all branches of the algorithm A .
and let each x & Jnp, , x € Quin, be called input,

output variable of the algorithm A , respectively. Finally
let

(4.5) A(Jn.p,A)a:m.otﬂ.A

be the generalized operational command, which serves as an
abbreviation of the algorithm A when it is used within an
other algorithm,

The algorithm A = (Km,... ,K(N’) ias applied to an
arbitrary input state 6, e 0503."’5"" (and we do matter
only the partial state @, l Infu) as follows: we start
with K, = X and @, , and, in general, if X; =
= X‘é‘), where i < 4 &« N, and 6;_, have been deter-
mined, then the following three possibilities must be dis-
tinguished:

8) CP= % kg X)) =2, it 3< N
and (&;_,(x,),..., 6;_,(x,)) € Domain £ | then
6 =C¥e;_, and K, = X%*"
algorithm is finished without any result (the restoring and

, otherwise the

input commands are included in this case);

m)

@)
b) c - ?fﬂa,',n-,datj

(Xgp0eey X,) 3 it

- 468 -

. wn)
(6 4 (%)),0ees €y (X)) € Domain gl o

and if there exists #1,1 < #2 £ N such that

m) h)
9’[q,4,",’a,k: (%-1 (.x,,),...,G',‘-‘_,(x,,,_)) = & , then 6; =
=06, _4 and K; =) , Otherwise the algorithm

is finished without any result;

) CH = STOP; then the algorithm is finished (cal-
led stopped) and 6'1-’_4 is the result called the output .,
state corresponding to the input state 6, in A .

A more formalized description of the execution of the
algorithm requires the following generalization of state:
a state is a function 6 e (0B u Yar u Com)Y | ang,
further, that each input state 6, of algorithm A =
= (K" ..., X™) nust satisfy: 6, (&™) = ¢ gor
“=4,2,...,N . Using this fact the next command which
should be executed after a decision command (=
= gf‘;;"'q:“m’%z(x,,,,,.,xn) » when 6 is the current
state, is denoted by the following expression:
m)
a,

(4.6) &g, rrees gy 3 (6 (X, 6 (g)

-

If 6',,, is the output state which corresponds to the
input state 6’0 in the algorithm A then the sequence
(xd,...,x,,,x“,,) defined by a), b) and ¢) is a branch
B of A;if Inpy=1x,,..,% 3} and Outp, =
= {4,,...,4,3 then the object 6}, (4;) , where 1£4 < 5,
is assigned to the % -tuple of objects (e, (xq),.,,,Go(x,‘)).
Therefore in this way there are g ,where Q=10utr,l,
n -ary functions determined by the algorithm A (if all
possible input states are taken in account). We say that

- 469 -

these functions are evaluated by A

If g =1 then the unique function, which is evalu-
ated by the algorithm A , will be denoted as f A (ar
in a more detailed form as £, (x,,..., X,), or using the
generalized operational command as f4 (X, ,...,%,)=: Yy e
The algorithm af% , which evaluates the absclute

value (2.5), is as follews:

C(D) C(‘” C(z)
(4eT) abs= (<R, 0= 855 <H, X2 try 505 B, 5=1 8 5
K(ﬂ) KC") K(ﬁ)
cca) C(‘l) c(S)
<y, STOPY; <8 Fxmig> 5 <&, STOE>) .
— —— —
‘K(37 K(‘I) K(s)

0 1 (A) ¢ 5)
Then B‘- (K(o)’ KM) , xl(ﬁ)’ K 3)) and 323 (K(’X(),.K ’l), K()
are the only two branches of the algorithm afm ,

MB,’ a!lfbsz- jn\fLAa 'f.xl, 02«1{:.9: al.tﬂ,sz: a:utfl-A = {t’.;
and ?%1= ?a.lyaz- ?“AS £t3 .

Let Fel gpq, be the set of all functions which may
be evaluated by algorithms over the algebra Afva =
= <Oti, Plax, Otx, Relypp > Further let Alra;, be the fol-
lowing algebra of the simplest arithmetic: Ofb;'«,, is the
set of all natural numbers, (v, contains only the suc-
cessor function swe " (ieee Auc®(x) = x+ 1 for

xX=0,4,...), .’Rel,, contains enly the equality relation

- 4% -

“=," @and PUar , £alr contains the amall letters from
the end, beginning of the Latin alphabet respectively,

which are provided by indices being natural numbers.

eore o contains all partial recur-
0! Fet Abra, on parti
sive functions, and, using the Church thesis, each func-
i i ive £ ion.
tion from Fet Atra is a partial recursive function
Proof. Let () € 045 be the number zero. Then the
following four algorithms evaluate the successor function

sue P , the zere function xen P (x) = 0

, ‘the una-
ry identity <d”(x) = x and the binary identity

t'd'm')(x,ry_) = ¢ , respectively:

SucL ({2, uc®(x)=1 g4) 5 <&, STOPY)..... 5uc(x)=: 4 ;
Zex= (Cly,x=: x> 5 <#,,0=2:x); <&, STOPD).....

Zoo“)(x)azx;?alcm =1{x} ;

3= (<, = x>; <&, STOP) ..o I (x) =+ x

5
j¢(2’= ((b:ﬂ.x; “‘L'Rr,,2'3_1>; <£’i,a‘,=:a},); <1)3,$TOP>)...,.

oo AP (%,) =124

-

It is known that starting with these four functions
all partial reeursive functions may be obtained by itera-
tive applications of three operators (of superposition, of
primitive recursion and the @ -operator). Therefore the

theorem will be proved by the following three steps:

a) superposition: if the function £;""" is evalu~-
ated by the algorithm F;'"" over Afma , and if

- 471 -

the function ££""’ is evaluated by the algorithm

F{™’ for each 4 =4,2,..,m , then the function
)), o (m) (m)

£ 0y XY= g ET X g0y X)y vy iy (K gyene5 X))

is evaluated by the following algorithm over .A!Ha,,

y m)
P ((y,ﬂ(m(x,,---,x@)ﬂ > <g,a_>f'2'ﬂ (X yerer X)) =104 05

) (m)
ver 3 < I BNk ey 3 V= Y5 W B gy)

=:%,> 5 Vpmyg, STOP>)

where j""’,:m):{“‘w""‘"m} and Quitfe_ pmy = (X, ¥ ;

b) primitive recursion: if the function £“’,f™+2)

is evaluated by the algorithm over Abm,, F‘m’), presss s
respectively, then the function £“*7 which is de-

termined by the known requirements:

4)
{f“"’ (Xgyeey Xy y0) = £ (X ey X)

(n+1) (m+2) (1),

£ (Kypeee, Xy g+ 1)= £ (Kyyorey Xty £ (X poen, X ,4))

is evaluated by the following algorithm over Abm,q :

)

P Ll B "ty %) =003 KBy, 01835 <l =y 2

(n+2)
{#,STOP>; <% F

(Xgpooey X tyar)=z 0> ;

<b6,\544-c“)(t)==t)’. (.Qr’,’b= q"fﬂa,»‘;]); (%,SIOP)) >

where WFM,” = {x1,...,x,,,,nﬁ, O’ujap‘:,,”,,, = {ar}

and PMFW+0 = {t};

-42-

e) @ -operator: if the functien F@m+1) 5 eva-
luated by the algoritm F™*" over Atva, , then
the function

@ +1)

£ oy X) = (@) £ 0 o,)= 01

vhere on the right hand side the smallest integer = isa
denoted such that the equality in square brackets is sa-
tisfied (if there is no such integer then £ remains
undefined in this case), is evaluated by the following al-

gorithm over Ab‘w1 :

A
P

)
P (8, 02 4> <, P oty X)=220 <1 g £

1
Y, z=teq p 1% B, % =35 <N, STOPS; <t Suc" iy

(n+1
,F

)
::q«); (lls (%1,.'.,3(”"‘}.)_—-':2); <,¢rg,z=t,;by,,¥,>),

where Ynfi_iny = 1x ..., %, 3, Oiln_,,= {x} and

PMF‘”“) = {oy.}

5. Equivalencies of algorithms over algebras

Let ua'consider an algorithm A over an algebra and
let Inp, = {xy,..., %, § and Outp, = {4} (see the pre-
vious Sect.4). If {o0,,...,0, % € Domain £, then by
the application of the algorithm A to an arbitrary input
state 6, such that 6, (x;)=o0; for £é=4,2,...,%,
the branch B of A ia chosen uniquely (by the require-
ments a), b) and c)). We say that the x -tuple (o,..., 0,)
belongs to the branch B and let 2om, be the set of

- 473 -

all i =-tuples from Domain fA which belong to B .

The mapping Part A such that Lomain Part, =
=40B; Be By ¥ and Range Party = {Domg; BeBrytis
called partialization of the algorithn A if

(5.1) Pant, (0B)= @ms for each BeBr, -

Obviously

(542) ‘.'Oomsnﬁms:¢ﬁ if B+ B andBéJuA%mB-_-
= Mi‘A .

Now let us consider two algorithms A o and A 2
with unique output variable over the algebras Abm,,, and
Atra, . We say that A, is wesker than A, if there
exists a mapping ¢ such that Domain $ = B/pA1 and
Renge @ c BmAz which satisfies the following two requi-

rements

(5.4) ﬂmB c Dom

for each B e Br
o) Ay

’
(5.5) OB and O0O(P(B)) determine equivalent terms
for each B e :BLA1 .

The algorithms A1 and A, are called branch equi-
valent if A, is weaker than A, and simultanecusly A,
is weaker than A,' .

Theorem 2. If A, and A, are two branch equivalent
algorithms with unique output variable over some algebras,
then £A1 = fAz , i.e. there exists a one-to-one corres-

pondence g between Jnfry ~ and Jnprps, such that
- 474 -

£A1 £ S “lo)’ fA,_(-‘P(“»t)’ ey @ (.xt)) .

Proof follows immediately by the facts that
£0p (04,41., 0)=£,(0y,...,0,) Tor each (0,,...,0,) € Dom g
and each B e Br, ,
and further, that two equivalent terms always determine
the same function,

On the other hand there are terms T, and T, which
are not branch equivalent although -£1.1 = f"'&, . Ed.ge in a
numerical algebra one may take T1 =(x+y)x) and T, =
= ((x2) + (3 z)) when the usual distributive law is as-
sumed, or in the minimal boolean algebra one may take T, =
=((XAY)) and T, = ((0 X))y (1Y), ete.

If we admit infinite algorithms and relations in lo-
gic with infinite many truth values (which are the symbols
1,2 ,...,4% ,...) then the following definition and con-
struction are possible for each algebra A¢vra =
=<0%j, PVar, O3, Rel yp,? and each algorithm A over
Abra such that ca.«zm= {4t and Imp, =
=4X,, Xy y000, %, 3 .

If Bry =4B;,B,,...% , i.e. a numbering of all
branches of A is assumed, then the following i -ary re-
lation A?E'::) y where & =IBx, | may be infinite, may be

introduced:

) .
(546) Aqf;) (04,0005 0p) = 4<¢==5(0,,...,0,) € .‘Dman,'

for 4 =1,2,... .

) 2y
If 0B, = (C:";...; C,;:%) then let

- 475 -

c))
AB, = (< & “ C,,") Ysss 3

&) s
o | c,,. > ;<Birs, STOP) for each i =1,2,... , whe-
re it is assumed that b;:‘" * ,b'q?’ if either < 4 4
or # # g, and therefore the following (may be infinite)
algorithm is defined:

* v
(5.7) A =(<2",Ag,r¢r(4, "(2, &'ﬁ-’)""] (x,’,..., ‘xw)> H

a0
w38, C
AR A A

<o M, Y; <e" STOPY ;

1'!-0-4’

) 1 L)
Oy, ¢ T5s s Kt STORY; s <H) €3

<UD,y <8, STOPY ...)

over the algebra Abm* such that

(5.8) Qbi*=0%i, Plar* = Plan, Op*= Opn, Rel* contains
the only relation (5.6) and &alr* contains as many
labels as necessary, i.e. fa¥* may be infinite.

Thus the following theorem is proved:

Theorem 3. If A is an arbitrary algorithm with only
one output variable over the algebra Afca then there
exists an other algebra Af«a* satisfying (5.8) and
(5.6), and an algorithm A¥* over A&«a* asatisfying
(5¢7) and such that A* and A are branch equivalent.
Informally speaking Theorem 3 asserts that each algorithm
may be replaced by an other one which is branch equivalent
with it and which requires just one single relation being

tested at the beginning.

- 476 -

References

[1] BURSTALL Rod.M.: An algebraic description of pro-
grams with assertions, verification and simu-
lation, SIGPLAN Notices Vol.7,No.l,Jan.1972,
7‘140

(2] UULfK K.: On semantics of progremming languages,
Automatentheorie und Formale Sprachen, editors
J.Dorr-G.Hotz,Bibliographisches Institut,Mann-
heim-Wien-Zirich 1970,291-303.

(3] BULfK K.: On sequential and non-sequential machineg
and their relation to the computation in compu-
ters (mimeographed in IFIP-WG 2.2 Bulletin,No.
6,February 1970).

Research Institute for Mathematical Machines
Lulné ul,.
Prague 6

Ceskoslovensko

(Oblatum 17.5.1972)

- 477 -

	
	Article

