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ON INTERPRETABILITY IN SET THEORIES II

Petr HAJEK, Praha

This paper is a continuation of [2] and [3] and uses X
techniques developed in [1]. ZF denotes the Zermelo-Fraen-
kel set theory and GB the Godel-Bernays set theory. We ad-
opt conventions mede in [3] § 1 (Preliminaries). GB is a
conservative extension of ZF; so we have (on (ZF, ¢) &>
¢=>Con (GB, ) for each ZF-formula ¢ . Denote by
e € ITGB) the set of all ZF-formulas ¢ such that
(ZF, @) is interpretable in ZF ((GB, ) is interpre-
table in GB). We know the following: (1) @ € U, v

0
v Jgp=>Cm (ZF,9) , (A T -+ 0, 3) T, T, -
o )
-2 4 and I%p € Z,
(Wwe assume Com (ZF) .) There remain the following ques-
tions: ) '

(1) what is the exact position of :72‘_. in the arithmeti-

cal hierarchy? In particular, is a complete TT: -

Izk
set?

(2) What is the relation between (on (ZF, @), @ €
3 jzr-‘ , P € jcb 2 In particular, is %B - :72,_. non-

empty?

AMS, Primary: 02F35, 02K15 Ref. Z. 2.641.3,
2.653.1
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Unfortunately, I have not succeeded to answer these
questions exhaustively; but I hope that the results of this
paper give some new information on both questions. We pro-
ve the following:

Theorem 1. If ZF is consistent then J,. ¢ 'IT: .

The question if JZF is not a 2; -get, in parti-
cular, if it is a complete T!'g_ -aet, remains open. Accor-
ding to question (2), if we had a (closed) formula
9e%p~ Lp
Con (ZF, @), Con (ZF, 1 @) (i.e. g  would be indepen-

, it would satisfy the following:

dent from 2F), @ € JZF . I offer to the reader a formula
with the following properties:

Theorem 2. If ZF is consistent then there is a closed
ZF-formula g such that (1) @ is independent from ZF,
(2) neither (2F, @) nor (ZF, 7@ ) is interpretable in
ZF and (3) neither (GB, @) nor (GB, 7 ) is interpret-
able in GB.

In Discussion, we mention possible generalizations of these
results (in the ap’irit of [3]) for theories containing arith-
metic and having some additional properties; we further show
that if dGB - B¢ is non-empty then there is a very

simple formula in this set. We conclude with some remarks.

It seems reasonable to use the following hierarchy of
P-formulas (P is the Peano arithmetic): a P-formula is T,
(Z,) if it has a prefix containing m alterating quan-
tifiers, the first one being universal (existential), follo-
wed by a PR-formula (see [1] for PR-formulas)., There will
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be no misunderstanding with the arithmetical hierarchy of
sets of natural numbers (here we use 3o and T, ).
If T' is a class of formulas and T is a theory then
we say that a T-formula ¢ is a I -formula in T if
there is a I' -formula y such that T+~ @ = % . Note
that for each T containing P 21 -formulas in T
coincide with (Feferman’s) RE-formulas in T .,

Lemmg l. If x is an interpretation of ZF in ZF th;n
there is a formula @ with two free variables such that
the following is ZP-provable ( x, 4, ... are variables
for natural numbers and x*, y*, . are variables for

natural numbers in the sense of the interpretation):

(1) (Vx)(3!x*) o (x,x¥),
(2) e(0,0%)
(3) (p(x,x*¥) & @ (x+ 1,4%)) > y*= x*4 X T*

2roof. Let Seg (a) mean that a is a finite se-
quence, let L% (a) be the length of the sequence and
let (a); e the < -th member of @ . We put

E(x,x*)= (Fa)(Seg(a)& L (a)=x+T&(a); =
=0%& (Vg < Lh (@)=T)(a), s=(a)+*T*)) .
One proves the above formulas by induction inside ZF.

Lemma 2+ If x is an interpretation of ZF in ZF and
if @ is as in Lemma 1 then for each 3| 4 ~formula

P (Xy.ea) we have:

(%) ZP - (@ (x,x*) & ... )= (@ (x,..) > @F (x%...0) .
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Proof. By [1] 3.9, it suffices to prove the present
lemma for Feferman’s BPF. First one proves by (metamathe-

matical) induetion

ZF H(p (X, x*)& ...) = (y (x,...) = y*(x¥*,...))

for each 1y e EF using induction inside ZF; then one pro-
ves (% ) for BPF (derive the following formulas from (1) -
(3) in ZF :

(4) (ep(x,u®)& @y, u*)) > x=1a ,
(5) (plx,u®)& v¥<*u*)—> (I <x)plyg,v*)) .
Corollary l. If ¢ is a PR-fermula then
(EC(x, Xx*) & ...)—> (@ (x,...) = ¢*(x*,... )
(since both ¢ and 1@ are 3| -formulas in ZF).
Corollary 2. If ¢ is a T\',' -formula then
(P(x,x*)&...) > (p*(x*...) > @ (x,...))
Corollary 3. If @ is a closed TT,, -formula and-
9 e 7, then ZF +~ @ .

It is of some interest that we can give an alternati-
ve proof of the last corollary using the Oroy'o result (ef.
[3] Lemma 2):

Let A& be such that all the axioms of the arithmetic @,
are provable in ZF M % . Then

ZPF 19— Prgq (0F)> Phrzrn1 OF)> 1@ e em, g1 2

icee ZF-Canp rpppm,9)1 @ » vhich together with
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Orey’s result gives the corollary. (For the first impli-
cation see [1] 5.5.)

Legma 3 (Feferman [1] 6.6 and 8.9). If § is a PR-
bi-numeration of ZF then (- C‘-M'F) € X -

Proof of Theorem 1. Suppose that 'JZF ia Tl': R
i.e. the complement of ’JZF is recursively enumerable.
Let g‘ be a PR-bi-numeration of ZF in ZF; then
CZF,~ Cg'n.f ) is consistent and, by [3] Lemma 1, there
is a "nice" numeration of — J,. in (ZF, 4 anf) , ide.
there is a P-formula 4~ such that

P € D= (ZF, 7 0n ) - (3y) 7 (P, 3) =
=> (3k) ((ZF, Cony) oy (P, %)) -
Note that ZF 2 (P, 4 ) =@, (f(g), 4 ) where , ia a
T, -formula in ZF defined in [3] and £ ia a recursive
function; hence 7 (3, 4 ) is a T, -formula in ZF.

If ¢ is a formula and @ & Jyp then (i)
IF v @, (ii) for some fe we have

ZF,m Cong-y{(3, %) and by (i) we have .
(ii1) ZF H(Vy < &) f?of;(?,ry_) .

By the diagonal lemma [1] 5.1, find a closed P-formula
such that

ZF @ = (F) (¢ (P, ) & (V< )1 Bt (F,2)) .

Suppose ¢ & J,. ; then, by (ii) and (iii) above,
we have ZF, 7 Cong — @ . Since 1 (ong € T (by
Lemma 3), we have ¢ & T .

- 449 -



Suppose @ € jZF , then
Con (ZF,nCong, (Vg ) 5 (P, 4 )) by the properties of
o . Dencte the interpretation of (ZF, )  in ZF by
* and the theory (ZF,~ Cen, (Vy)ay(p,y) vy ZF, .

Then we have

(1) ZP1+—(3x)@o£? (F,x) (from 7 Cone )
(2)  ZF, o 3y)y (F,49)

(3) ZF, b (T *) (g ™(GH, ¢ *) & (Vara*y¥) 1 R4 (3% 2%)) .

We proceed informally in ZF, . Let © be as in Lem-
ma 1. For 4* from (3), there is no 4 such that

e (y,y*) (say, y4* ia non-atandard); otherwise we had
¥ (P, n*) by Cerollary 2. But if x ia as in (1) and
if @ (x,x*) then Px £s";, (P*, x*) and neces-
sarily x* < * aé,* (ef. (5) in the proof of Lemma 2!).
This contradicts (3'). So we derived a contradiction in ZF .
Hence we proved ¢ & J ¢

We see that the assumption ﬂzp € TT: leads to

a contradiction; hence J, . is not Tl‘: .

Lemma 4 (Vop&nka [4])e (GB,-71Com  n,) is inter-

pretable in GB, i.e. (- Con cnq) € Ty

Eroof of Theorem 2. Let Intp (x,4 ) be a PR-for-
mula saying " 4 is an interpretation of (LGB1l,x) in

[GB1" (ef. [2] or [3]) and find @ @ such that
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IF g = (Vx) (Intp (9,x)> (Fy <x)Intp (g,y))
(by the way, ¢ is the Rosser’s formula with interpre-
tability instead of provability).

(1) Let d Dbe the least interpretation of (GB,g)
in GB; denote it by % . Then GB ~ @* ,

GBH(Intp (g, N* , ide.
GBHI[(3y <d)Intp (TF,4)]* . The formula
Ay <d) Intp (39, 4) is PR in GB, hence, by Co-

rollary 1, GB+(3y < d ) Intpn (7g,d) and hence the-
re is a dd < d which is an interpretation of

(GB, 79@) in GB. Denote it by 0 . We have

GB'_-‘QU: GBP['J"}«*%"'q,E)]U and hence

GB+ [(Iz=<d) Intn(F,2)1° and

GBr(3z<d ) Intn (F,z) , 8o that there is a

d,z < d L, < d which is an interpretation of (GB, @)
in GB. This is a contradiction, so that ¢ & Jgz -

() 1t (gl e Tep then there is the least o,
which is an interpretation of (GB,- 1) in GB. By (1),
then there is a d,2 which is an interpretation of
(6B, @) in GB, which is a contradiction. Hence

(o) & Jgp and @ is independent from GB (and from
ZF).

(3) @ & J;p eince ¢ is a T -formula in ZF
{(cf. Corollary 3).
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(4) To prove (1) & yzr-' we need the following

Lemma 5. If § ie a PR-bi-numeration of ZF such

thut ZF - Com o, = anas and if @ is as above then

(ZF,7 Cm ) -1 @ .

Otherwise we had the following interpretations:

6B,m1g = GB, 11 (gny =GB, 1 Cony oy —> 6B -

(Double arrows are identities; for the last arrow see Lem-
ma 4.) By composition of interpretations, we would have an
interpretation of (6B, 1) in GB, which is a contra-
diction, (Note that the "natural" bi-numeration of ZF has
the desired property.)

We continue the proof of (-1@) ¢ J, . Suppose
the contrary. Then we have the following interpretations:

ZF,ne —> ZF '=>ZF7"C?"’§79’ .

We consider the composed interpretation X of
(ZF, @) in(ZP,-quwg,g) and proceed in the last
theory. Since = Cong we have -1 Conp.pq and hence
there are 7, such that Intq (F,4) and

Intn (¢, z ) . Suppose that 4 and z are least with
the corresponding properties. Then, by ¢ , = is smaller
than 4 . On the other hand, we have (- g)* , which says

(Fu*) (Int p*(P u*) & (VoX<*u*) o Int p* (TG %)) .

If p(z,z*) then we have Intn*(5g* z*) and hen-

ce yu*a< kg ; ‘then there is a «  such that
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eCu, u*) w <=z and Intp (F,w) which
is a contradiction. Since (ZF,5 C‘?"’g , %) 1is consistent
by Lemma 5, there is no interpretation of (ZF, 6~ Sp)

in ZF, q.e.d.

Discuggion. (1) Let us first discuss the possibility
of generalizing Theorems 1 and 2 for theories containing
arithmetic. Inspection of the proof of Theorem 1 shows that
its assertion holds for any primitive recursively axiomati-
zed theory T containing P , which is consistent, essen-
tially reflexive (so that [3] Lemma 1 applies) and satis-
fies Lemmas 1 and 2. The proofs of these lemmas apply to
each theory T in which, in addition to the assumptions
just made, the induction schema is provable for all T-for-
mulas and in which sequences of arbitrary objects are defi-
nable. (Note in passing that in GB sequences of arbitrary
classes are easily definable, but the induction schema is
not provable for all formulas.) Concerning Theorem 2, let
Pc Tg S, where T 1is as above and S 1is a conser-
vative finitely axiomatized extension of T . We need two
additional assumptions m S *: (i) There is a PR-bi-numera-

tion o« of T in T such tat T Con ;= Con .

(This is the case e.g. if the formal statement saying

" [ S]] is a conservative extension of o " is provab-
le in T n)

(1) (5,7 Cm g, ) 1s interpretable in § .

Thie is an important assumption; it is not clear how to
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modify Vop&nka’s original proof of (— Con cnqy) & %p
e.g. for a proof of = C‘.’"’ten € Jep where GP is the

finitely axiomatized conservative extension of the Peano’s
arithmetic with classes (say, Godel-Peano). Let us stress
the fact that one cannot use Feferman’s [1]1 8.9 for S sin-
ce S is finitely axiomatizable and therefore pot reflexi-
ve.

(2) Suppose that we would find a ZF-formula o such
that @ € J.p — J,. . Then, by Orey’s result, there is

a natural number 4  such that C‘?"‘:zrl\h,q] is nat
provable in ZF. Denote the last formula by ¥, - Itis a
P-formula and, moreover, a TT,, -formula. Since ZF H~ @,
we have g, ¢ J . by Corollary 3. On the other hand,

if x is an interpretation of (6B, ¢ ) in GB then
GB—g*, GB-(g —>g,)* by essential reflexivi

ty of ZF and by ZF < GB ; hence we have GB - ¢ and
I, € Jsa 1 Sc we have proved the faollawing
Fact. If Jop - Jpp + £ then there is a T -for-

- J

mula in 2F -

UG-B
This contrasts with Corollary 3; by this corollary, no
v 4 -formula is in 'JZF -7 (Examplea of formulaa in

GB
Le = 9 constructed in [2] and (3] are TI, -formu-
las.)

B

(3) It follows by Orey’s result that 9 € T, iff

there is a recursive function £ such that, for each % ,
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£(% ) is arproof of Com in ZF. Define

CZF P, cp]
B

g € JZF iff there is a primitive recursive func-
tion £ such that, for each #%, £ (%) is a proof of

C‘-””’czrrh,gz

in ZF. Then Uz:',“"'" is Z: (by the
existence of a recursive function universal for primitive

recursive functions), Inspection of the proof in [2} shows
that U::"""'— UGB ia non-empty (assuming that ZF isa @ -

consistent).

Premy
I8 Jze - Ipp
< -consistency to Con (ZF) in the praof of

4 @ 2 Can we weaken the assumption of

Prirmry
L

- Jsp * #  using methods of [31 or other methods?
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