

Werk

Label: Article Jahr: 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0013|log41

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae

13,3 (1972)

A NOTE ON FRÉCHET SPACES 1)

R. FRIČ, Žilina

Recall that a Fréchet space (L, Λ) is a T_1 topological space such that for every subset A we have $\lambda A = \{x \mid x = \lim x_m, x_m \in A\}$, i.e. λA is the set of all limit points of sequences of points of A; the space (L, λ) is said to be sequentially regular if for every sequence $\langle x_m \rangle$ of points of L and every point x such that $x \in L - \lambda U(x_m)$ there is a continuous function f on (L, λ) , $0 \le f(x) \le 1$, and a subsequence $\langle m_i \rangle$ of $\langle m \rangle$ such that f(x) = 0, $f(U(x_m)) = 1$ (cf.[3]).

Following [5] a T_1 topological space (L, Λ) is called \mathcal{K}_0 -regular if for every countable subset Λ and every point x such that $x \in L - \Lambda \Lambda$ there is a continuous function f on (L, Λ) , $0 \le f(x) \le 1$ such that f(x) = 0, $f[\Lambda] = 1$. It can be readily seen that every \mathcal{K}_0 -regular Fréchet space is sequentially regular. J. Novák asked in [5] whether every sequentially regular Fréchet space is \mathcal{K}_0 -regular.

AMS, Primary: 54D55

Ref. Z. 3.961.4

¹⁾ The article is a part of [1].

The main purpose of the present paper is to show that the answer is no. The space Λ_{∞} constructed by F.B. Jones in [2] ²⁾ (as a Moore space which is not completely regular) is a counter-example. We also give a necessary and sufficient condition for a Fréchet sequentially regular space to be κ_{\circ} -regular and two sufficient conditions for an κ_{\circ} -regular Fréchet space to be completely regular.

Example. Let L be the subset of all points (x, y) of the Euclidean plane $\mathbb{R} \times \mathbb{R}$ such that $ny \ge 0$ provided with the following refinement of the product topology: for n > 0, the sets

 $V^{\kappa}(x,0) = f(x,0)$ $f(u,w) | (u,w) \in L$, $(u-x)^2 + (v-\kappa)^2 < \kappa^2$ are also neighbourhoods of the point (x,0) (Niemytzky space).

Denote by $\mathcal A$ the just described topology. Clearly, $(L, \mathcal A)$ satisfies the first axiom of countability and hence it is Fréchet. The subspace $(D, \mathcal A/D)$ of $(L, \mathcal A)$ where $D = \{(x,0) \mid x \in \mathbb R^3,$ is discrete. The space $(L, \mathcal A)$ is completely regular and hence sequentially regular. The set D is the union of two disjoint uncountable sets, denote them by A and by B, such that if U is an open set containing uncountably many points of one of them, then AU contains uncountably many points of the other (for the proof see [2]).

Let $\langle (L_m, \lambda_m) \rangle_{m=1}^{\infty}$ be a simple sequence of disjoint copies of the space (L, λ) . For convenience we may

It is Professor J. Novák who calle my attention to that article.

imagine these spaces as lying in sifferent planes of the three-simensional Euclisean space parallel to the plane of L . For each point set H in L and to every natural m there corresponds in a natural way the set H_m in L_m (the set H is the projection of every H_m). The symbol q denotes always a point of D .

Let $\sum_{m=1}^{\infty} (L_n, \Lambda_m)$ be the topological sum of the above sequence. We modify it in the following manner:

1. If m is odd (m=1,3,5,...) and q is a point of B, then we identify points q_m and q_{m+1} to $(q_m;q_{m+1})$; if m is even (m=2,4,6,...) and q is a point of A, then we identify points q_m and q_{m+1} to $(q_m;q_{m+1})$ (the projection of $(q_m;q_{m+1})$ is q in this case). Let for $\kappa>0$ the sets

$$W^{\kappa}((q_m;q_{m+1})) =$$

$$= \{(q_m; q_{m+1})\} \cup \{\gamma_m^{\kappa}(q) - (q)\} \cup \{\gamma_{m+1}^{\kappa}(q) - (q_{m+1})\}$$

be fundamental systems of neighbourhoods of these points, i.e. we take a quotient space of $\sum_{m=0}^{\infty} (L_m, \lambda_m)$.

2. We add one "ideal" point p (distinct from all) to the modified $\sum\limits_{m=1}^{\infty} (L_m, \lambda)$.

Let for $\mathcal{R} = 1, 2, 3, \dots$, the sets

 $O_{\mathcal{R}}(n) = (n) \cup \{\bigcup_{m>k} \bigcup_{q>0} (x_m, q_m) \} \cup \{\bigcup_{m>k} (q_m; q_{m+1}) \}$ form a fundamental system of neighbourhoods of p.

Denote by $(L_{\infty}, \lambda_{\infty})$ this modifies space (cf.[2], where $\Lambda_{\infty} = (L_{\infty}, \lambda_{\infty})$). The space $(L_{\infty}, \lambda_{\infty})$ satisfies the first axiom of countability and hence it is

Fréchet, it is "completely regular at every point" except p but it is not completely regular (at p) since $p \in L_{\infty} - \lambda_{\infty} A_{1}$, but for each continuous function p on $(L_{\infty}, \lambda_{\infty})$ we have p of p of

<u>Proposition</u>. The Fréchet space (L_{∞} , λ_{∞}) is sequentially regular but fails to be x_o -regular.

<u>Proof.</u> First prove that $(L_{\infty}, \lambda_{\infty})$ is sequentially regular. Since $(L_{\infty}, \lambda_{\infty})$ is "completely regular and hence sequentially regular at every point" except μ , we have to prove that if $\langle z_m \rangle$ is a sequence of points of L_{∞} such that $\mu \in L_{\infty} - \lambda_{\infty} \bigcap_{m=1}^{\infty} (z_m)$, then there is a continuous function f on $(L_{\infty}, \lambda_{\infty})$ and a subsequence $\langle z_{m_1} \rangle$ of $\langle z_m \rangle$ such that

$$f(p) = 0$$
, $f(x_{m_i}) = 1$, $i = 1, 2, 3, ...$

Since there is a natural k_o such that $z_m \in L_o - 0_{k_o}(n)$ for all m, we always can and select a subsequence $\langle z'_{m_s} \rangle$ of $\langle z_m \rangle$ such that

- a) $\langle z'_{m_i} \rangle$ is a constant sequence or the projection of no z'_{m_i} lies in $D \subset L$. In this case the construction of f and the subsequence $\langle z_{m_i} \rangle$ of $\langle z'_{m_i} \rangle$ and hence of $\langle z_m \rangle$ is easy and is omitted.
- b) If $(x_i', 0) \in D \subset L$ is the projection of z_{m_i}' , i.e. z_{m_i}' is either of the form of $(q_m^{(i)}; q_{m+1}^{(i)})$, $m \leq k_0$, or $z_{m_i}' \in A_1$, then there is a strictly monotone, say increasing, subsequence $\langle x_i \rangle$ of the sequence $\langle x_i' \rangle$ of real numbers x_i' . Let $\langle x_i \rangle$ be a sequence of positive real numbers such that

$$\begin{split} \mathbf{x}_{i-1} + \mathbf{n}_{i-1} &< \mathbf{x}_i - \mathbf{n}_i < \mathbf{x}_i + \mathbf{n}_i < \mathbf{x}_{i+1} - \mathbf{n}_{i+1}, \, i = 1, 2, 3, \dots \, . \\ \\ \text{Denote by } & \mathbf{U} \left(\mathbf{x}_{m_i} \right) = \left(\mathbf{V}^{n_i} (\mathbf{x}_i \,,\, 0 \,) \right)_4 \quad \text{if } \mathbf{x}_{m_i} \in \mathbf{A}_4 \\ \\ \text{and} \end{split}$$

$$U(x_{m_i}) = W^{n_i}((q_m^{(i)}; q_{m+1}^{(i)}))$$

otherwise. Now, let f be a function on (L_{∞} , Λ_{∞}) sefines in the following manner:

$$f(x) = 1$$
 for $x = x_{m_i}$;

 $\mathbf{f}(x)=0 \text{ for each } x \text{ on the boundary of the}$ neighbourhood $U\left(x_{m_i}\right)$ of x_{m_i} and linear on the segment from x_{m_i} to x, $i=1,2,3,\ldots$;

$$f(x) = 0$$
 for $x \in L_{\infty} - \lambda \bigcup_{i=1}^{\infty} u(x_{m_i})$.

It is easy to verify that f has the desired properties. If the sequence $\langle x_i \rangle$ is decreasing, then the procedure is similar.

Secondly, denote by

Let (L, λ) be a Fréchet sequentially regular space. Recall that the completely regular modification $\tilde{\lambda}$ of λ is the finest of all completely regular topologies for L coarser than λ , the systems of continuous functions on

(L, λ) and on (L, $\widetilde{\lambda}$) coincide and $\lim_m x_m = x$ if and only if the sequence $\langle x_m \rangle$ is eventually in every $\widetilde{\lambda}$ -neighbourhood of x (see [3]). A point x_0 is called a side-point of a sequence $\langle x_m \rangle$ in (L, $\widetilde{\lambda}$) if any subsequence $\langle x_{m_1} \rangle$ of $\langle x_m \rangle$ does not converge to x_0 and the sequence $\langle x_m \rangle$ is frequently in every $\widetilde{\lambda}$ -neighbourhood of x_0 .

Theorem 1. A Fréchet sequentially regular space (L,λ) is χ_0 -regular if and only if there is no sequence in $(L,\widetilde{\lambda})$ having a side-point, where $\widetilde{\lambda}$ is the completely regular modification of λ .

<u>Proof.</u> I. If there is a sequence $\langle x_m \rangle$ in (L, \mathcal{X}) having a side-point x_0 , then

$$x_0 \in L - \lambda \cup (x_m)$$
, $x_0 \in \widetilde{\lambda} \cup (x_m)$.

Thus for each continuous function f on (L, \mathcal{X}) and hence, as mentioned above, on (L, \mathcal{X}) we have

$$f(x_0) \in \overline{U(f(x_n))}$$
.

But this implies that (L, A) cannot be x_0 -regular.

II. If (L, λ) is not x_0 —regular, then there is a sequence (x_m) of points $x_m \in L$ and a point $x_0 \in L$ such that

$$x_0 \in L - \lambda U(x_m)$$

and for each continuous function f on (L, λ) there is a subsequence $\langle m_i \rangle$ of $\langle m \rangle$ such that

$$\lim f(x_{m_i}) = f(x_0) .$$

From the definition of $\widetilde{\lambda}$ it follows that

$$x_o \in \widetilde{\lambda} \cup (x_m)$$
,

i.e. x_0 is a size-point of the sequence $\langle x_m \rangle$ in $(L, \tilde{\chi})$.

Theorem 2. A regular separable x_{λ} -regular Fréchet space (L, λ) is completely regular.

<u>Proof.</u> Denote by $S \subset L$ a countable set such that $G \cap S \neq \emptyset$ for each non-empty open set $G \subset L$. Let $F \subset L$ be a non-empty closed set and $x_0 \in L - F$. Then there is a neighbourhood $W(x_0)$ such that $\lambda W(x_0) \subset C L - F$ and $(L - \lambda W(x_0)) \cap S \neq \emptyset$. Hence $(L - W(x_0)) \cap S \neq \emptyset$. Now, arrange the countable set $(L - W(x_0)) \cap S$, either finite or infinite, into a sequence (x_n) . Evidently

$$x_0 \in (L - \lambda U(x_m)) \subset L - F$$
.

Since (L, λ) is κ_0 -regular, there is a continuous function f on (L, λ) such that

$$f(x_0) = 0$$
, $f[U(x_m)] = 1 = f[F]$.

Corollary. A first-countable separable ** o -regular topological space is completely regular.

<u>Proof.</u> Professor J. Novák prove² in [4] that every first-countable sequentially regular topological space is regular. The assertion follows at once from the foregoing Theorem 2.

References

[1] R. FRIČ: Sequential structures and their application to probability theory. Thesis, MÚ ČSAV, Praha, 1972.

- [2] F.B. JONES: Moore spaces and uniform spaces. Proc.Amer. Math.Soc.9(1958),483-486.
- [3] V. KOUTNÍK: On sequentially regular convergence spaces. Czechoslovak Math.J.17(1967),232-247.
- [4] J. NOVÁK: On convergence spaces and their sequential envelopes. Czechoslovak Math.J.15(1965),74-100.
- [5] J. NOVÁK: On some problems concerning the convergence spaces and groups. General Topology and its Relations to Modern Analysis and Algebra (Proc. Kanpur Topological Conf., 1968). Academia, Prague, 1971, 219-229.

MÚ ČSAV v Praze Praha 1, Žitná 25 VŠD v Žiline Žilina, Marxa—Engelsa 25

československo

(Oblatum 20.4:1972)