

Werk

Label: Article **Jahr:** 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0013|log36

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 13,2 (1972)

ON THE CANONICAL SUBDIRECT DECOMPOSITION OF A JOIN SEMI-

Juhani NIEMINEN, Tampere

1. Introduction. By a subdirect union of the algebras A_n ($n \in P$) a subalgebra R of the direct union $\Pi(A_n; p \in P)$ is meant, having the property that $f_n(R) =$ $=A_n$ for every decomposition homomorphism f_n $\Pi(A_n; p \in P)$. It is said that the algebra A can be represented as the subdirect union of the algebras An if A is isomorphic to a subdirect union of the A_n ; this subdirect union is called the subdirect decomposition of \boldsymbol{A} with factors A_n . An algebra is called subdirectly decomposable or subdirectly reducible if A has a subdirect decomposition, no decomposition homomorphism of which is an isomorphism. Further let A be an algebra and P a set of indices. The algebra A can be represented as a subdirect union of some algebras A_n , $p \in P$, if and only if A has congruence relations (θ_p ; $p \in P$) such that $\bigcap (\theta_n; n \in P) = 0$, the equality relation (see e.g. [1, Cor. 1, p. 140]).

Let the algebra A be a lattice L or a join semi
AMS, Primary: 06A20 Ref. Z. 2.724.8

lattice L_{\odot} , and $\theta(A)$ the lattice of all congruence relations on A. For any element $\theta \in \theta(A)$ there exists in $\theta(A)$ and element θ^* called the pseudocomplement of θ . The correspondence $\theta \longrightarrow \theta^{**}$ is a closure operation on $\theta(A)$ and the closed elements $\theta^{**} = \theta$ form a complete boolean algebra $\theta_*(A)$ on which the join operation is given by $\theta \lor \Phi = (\theta \cup \Phi)^{**}$ (when $A = L_{\odot}$, see [4, Thm.41).

Let $\{\theta_h; n \in P\}$ be a subset of $\theta_{\mathbf{x}}(A)$ such that $\theta_h^* = \bigcap(\theta_{\mathbf{g}}; q \in P, q \neq n)$ for all $n \in P$, then $\bigcap(\theta_h; n \in P) = \theta_h \cap \theta_h^* = 0$ and thus the set $\{\theta_h; n \in P\}$ generates a subdirect decomposition of A. Such a decomposition is called canonical by F. Maeda [31. In order that the set $\{\theta_h; n \in P\}$ generates a canonical subdirect decomposition of an algebra A, it is necessary and sufficient that $\theta_h \in \theta_k(A)$ for every $n \in P$, $\bigcap(\theta_h; n \in P) = 0$, and $\theta_Q \vee \theta_h = 1(n \neq q)$. The proof for $A = L_0$ is obvious according to the proof of F. Maeda in the case A = L (see [3, Thm. 2.11).

As pointed out by T. Tanaka [5, Remark 1], if $\theta_n^* = \bigcap (\theta_2; q \in P, q + p) = 0$, then $\theta_n = \theta_n^{**} = 1$ and the factor corresponding to θ_n can be omitted.

2. On the canonical subdirect decomposition of a semilattice with finite number of factors. In the following we shall consider the structure of a semilattice L. having a canonical subdirect decomposition with finite number of simple factors $L_{\mu \cup}$, i.e., every $\theta (L_{\mu \cup})$ contains exactly two elements. Thus every factor $L_{\mu \cup}$ corresponds to a maximal congruence relation θ_{μ}^{0} on L.

According to D. Papert [4, Thm. 1], every maximal congruence relation θ° on L_U is given by an ideal I of L_U such that $x \theta_{I}^{\circ} y$ if and only if $x, y \in I$, or x, $y \notin I$.

The notation $a - \langle k, a, k \in L_{\cup} \rangle$, means that if there is an element $c \in L_{\cup}$ such that c > a and c is comparable with k, then $c \ge k$. One calls k an immediate successor of a. We denote by is(a) the set of immediate successors of a. |is(a)| implies the number of the elements in the set is(a).

Lemma 1. If a semilattice L_{\cup} is finite and C a set of elements of L_{\cup} having the property $c \in C$, $|i_{\mathcal{S}}(c)| = 1$, then every maximal congruence relation $\theta_{(\alpha)}^{\circ}$, $a \in C$, on L_{\cup} has a complement $(\theta_{(\alpha)}^{\circ})'$ in $\theta(L_{\cup})$, where (α) is a principal ideal of L_{\cup} generated by a.

<u>Proof.</u> Let 1_{θ} and 0_{θ} be the greatest and the least element of the lattice $\theta(L_{\cup})$, respectively. We shall show that $(\theta_{(\alpha)}^{\circ})' = \bigcap (\theta_{(c)}^{\circ}, c \in \mathcal{C}, c \neq a)$, where $a \in \mathcal{C}$.

At first we show that $\bigcap (\theta_{(c)}^0; c \in C) = \theta_{\ell}$ The relation before is valid if (1) for every & $\in L_{\cup}$, & $\neq 1 \in L_{\cup}$, & $\in (c]$ for some $c \in C$, and (2) if for

every two disjoint elements k_1 , $k_2 \in L_{\cup}$, k_1 , $k_2 \neq 1$, there is an element $c \in C$ such that $k_1 \in (c]$ and $k_2 \notin (c]$. The condition (1) follows immediately from the fact that for every element $k \in L_{\cup}$, $k \leftarrow 1$, |io(k)| = 1.

(2) & and & can be (i) comparable, or (ii) noncomparable. (i) If \mathcal{Y}_{a} and \mathcal{Y}_{b} are comparable, then we can assume without any loss of generality, $\, \mathscr{N}_{\!_{\! 4}} < \, \mathscr{V}_{\!_{\! 2}} \,$. According to the finity of Lu, there is in Lu a finite chain $b_1 = x_0 \leftarrow x_1 \leftarrow x_2 \leftarrow \dots \leftarrow x_m = b_2$. If for some x_2 , $\dot{a} = 0, \dots, m-1, |ib(x_{\dot{a}})| = 1,$ the assertion is immediately valid. If $|i_{2}(x_{\frac{1}{2}})| \geq 2$, we can choose an immediate successor $y_1 + x_1$ for $x_1 = x_0$, and if lis (y_4) | = 1, the assertion follows. If $|is(y_4)| \ge 2$, then, after a finite number of similar steps, we can reach an element c & C for which the assertion is valid, since L. is finite. In the case (ii), where b_1 and b_2 are not comparable, $k_1 \cup k_2 > k_1$, k_2 . Then according to (i) abowe we find an element $c \in C$ such that say $k_{\mu} \in (c1)$ and $k_1 \cup k_2 \neq (c]$. But then $k_2 \neq (c]$, since if $k_2 \in (c]$, so $k_1 \cup k_2 \in (c J)$, which is a contradiction.

Trivially, $1 \neq C$. Then obviously $a \cap (\theta_{(c)}^{\circ}; c \in C, c + a) = 1_{\theta}$. Hence $(\theta_{(a)}^{\circ})' = \cap (\theta_{(c)}^{\circ}; c \in C, c + a)$.

Theorem 1. Every finite semilattice L has a canonical subdirect decomposition with simple factors.

Theorem 1 shows that a canonical subdirect decomposition of a semilattice L. with finite number of simple factors does not imply any structural properties for L. different from the case of lattices (see Dilworth [2, Thm. 3.31).

3. An infinite construction. In the following, we consider a class of infinite semilattices which has a canonical subdirect decomposition with simple factors. We shall call a semilattice L_{\cup} , for which $\theta(L_{\cup})$ is distributive, a quasidistributive semilattice. D. Papert has proved [4, Thm. 7] that a semilattice L_{\cup} is quasidistributive if and only if any two noncomparable elements of L_{\cup} have no lower bound in L_{\cup} .

Lemma 2. Let L_{\cup} be a semilattice, $a, k \in L_{\cup}, a \neq k$, and θ_{ak} a binary relation on L_{\cup} such that $x\theta_{ak}y$ if and only if (i), or (ii) and (iii) are valid, where (i) x = y, (ii) $a \cup k \cup x = a \cup k \cup x \cup y = a \cup k \cup y$; (iii) $a \cup x = x$ or $k \cup x = x$ and $a \cup y = y$ or $k \cup y = y$. Then θ_{ak} is a minimal congruence relation on L_{\cup} collapsing the elements a and k of L_{\cup} .

The proof is obvious.

Following J. Varlet [6] we define a part of a semilattice L_{\cup} . Let $a, b \in L_{\cup}$, $a \neq b$. The part $\langle a, b \rangle$ of L_{\cup} is a set-theoretical union of the elements of L_{\cup} contained by the closed intervals $[a, a \cup b]$ and $[b, a \cup b]$ of L_{\cup} .

We shall say that a congruence class C modulo θ is trivial if for any two elements x, $y \in C$, x = y.

Lemma 3. A semilattice L_U is quasidistributive if and only if the only nontrivial congruence class of the congruence relation $\theta_{a,b}$ is the part $\langle a,b \rangle$ of L_U .

Proof. 1° Let L_U be a quasidistributive semilattice and $c\theta_{ab}d$, c, $d \neq \langle a, b \rangle$, a + b and c + d, and a, b, c, $d \in L_U$. According to the definition of θ_{ab} only three cases arise: (i) $c \cup d > a \cup b$, (ii) $c \cup d < a \cup b$, and (iii) $c \cup d$ and $a \cup b$ are noncomparable.

(i) $c\theta_{ab}d \iff c\theta_{ab}c c d$ and $d\theta_{ab}c c d$. Thus $a \cup c \cup d = c \cup d = b \cup c \cup d$. But if c (or d) is noncomparable with $a \cup b$, then $a \cup c + c$ and $b \cup c + c$ ($a \cup d + d$ and $b \cup d + d$), since $a \cup b$ and c (d) have not a common lower bound in L_U (see [4, Thm. 7]). If for c (or d), $c > a \cup b$, then $c \cup a \cup b + a \cup b \cup c \cup d$ (or $d \cup a \cup b + a \cup b \cup c \cup d$), since d + c. Hence $c \not = ab \cdot d$.

(ii) If $c \cup d < a \cup b$, then $a \cup c \neq c$ and $c \cup b \neq c$, since if $c \cup a = c$ or $c \cup b = c$, then $c \in \langle a, b \rangle$, which is a contradiction.

(iii) $a \cup c = c$, $b \cup c \neq c$, since the noncomparable elements have not a common lower bound in L_{\cup} .

2° Let the only nontrivial congruence class module $\theta_{a,b}$ be the part $\langle \alpha, b \rangle$ of L_U for every two elements a, $b \in L_U$. Assume that two noncomparable elements c and d of L_U have a common lower bound $b \in L_U$ (see [4, Thm.

7]), and consider the congruence relation θ_{kc} . $d\theta_{kc}$ cud, since $k \cup d = d$, $c \cup d \cup c = c \cup d$, and $d \cup k \cup c = d \cup c \cup k \cup c$. But $d \neq \langle k, c \rangle = \lceil k, c \rceil$, since d and c are noncomparable, and $d \cup c \neq \lceil k, c \rceil$, since $c < d \cup c$. Thus $d\theta_{kc}$ cud implies a contradiction.

Now we can prove a theorem concerning the complement of $\theta_{a,b}$ in θ (L $_{\cup}$).

Lemma 4. If L_{\cup} is a quasidistributive semilattice, then for any two elements $a, k \in L_{\cup}$, $a \neq k$, θ_{ak} has a complement θ'_{ak} in $\theta(L_{\cup})$.

Proof. Consider the congruence relation $\bigcap_{\mathbf{x}\in A}\theta_{(\mathbf{x})}^{0}=X$, where $A=\langle \alpha, k \rangle - \alpha \cup k$. The congruence relation exists, since $\theta(L_{\cup})$ is the complete lattice. If $\mathbf{x}(\theta_{ak} \cap \mathbf{X})u$, where $\mathbf{x} \neq u$, $\mathbf{x}, u \in L_{\cup}$, then $\mathbf{x}\theta_{ak}u$ and according to Lemma 3, $\mathbf{x}, u \in \langle \alpha, k \rangle$. This implies $\theta_{(\mathbf{x})}^{0} \in \{\theta_{(\mathbf{x})}^{0}: \mathbf{x} \in A\}$ for which $\mathbf{x} \theta_{(\mathbf{x})}^{0} \mathbf{x} \cup u$, which is a contradiction. Hence $\theta_{ak} \cap \mathbf{X} = \theta_{\theta}$.

- (1) If $u \ge a \cup b$, then $u \cup z \ge a \cup b$ and $u \theta^{\circ}_{(x)} z \cup u$ for every $x \in A$.
- (ii) If u and $a \cup b$ are noncomparable, then $z \cup u \not\models a \cup b$, since $u \not\models a \cup b$, and thus $z \cup u \not\models \langle a, b \rangle$.

Then $u \theta_{(x)}^{\circ} z \cup u$ for every $x \in A$.

(iii) If $u < a \cup b$, then (1) $u \in \langle a, b \rangle$ or (2) u << a (or u < b), or (3) $u < a \cup b$ and u is noncomparable with a and ℓ . (1) If μ , $z \cup \mu \in \langle a, \ell \rangle$, then $u \theta_{ab} z \cup u$ and if $z \cup u \notin \langle a, b \rangle$ then $z \cup u >$ $> a \cup k$, since two noncomparable elements have not a common lower bound in L_{ω} , and thus $u \theta_{a,b}$, $a \cup b$ $\cup \& \theta_{(v)}^0 \times \cup u$ for every $x \in A$. (2) If u < a, then $u\theta_{(x)}^{0}a$ for every $x \in A$, for $u \in (x]$ if and only if a e(x], since two noncomparable elements of L, have not a common lower bound in L. . The last part of the proof is similar to that of (1). (3) u < a U & and u is noncomparable with a and b, then $u \notin \langle a, b \rangle$. Thus $u \theta_{(x)}^{o} u \cup$ $\cup \mathcal{L}$ or $\mathcal{U}_{(x)}^{0}$ $\mathcal{U}_{(x)}$ $\mathcal{U}_{(x)}$ for every $x \in A$ $u \cup b \theta_{ab}$ aub (or $u \cup a \theta_{ab}$ aub). After this we can continue as in the case (1). Hence X is the complement of tal in O(Lu).

Theorem 2. Let L_{\cup} be a quasidistributive semilattice, where for every element $a \in L_{\cup}$, $a \neq 1$, there exists an element $b \in i_{0}(a)$. Then L_{\cup} has a canonical subdirect decomposition with simple factors if and only if $1 \in L_{\cup}$.

Proof. 1° Let $1 \in L_U$. Clearly $\cap (\theta_{(x)}^0; x \in C) = \theta_\theta$, where $C = L_U - 1$. It follows from the quasidistributivity of L_U that for every $a \neq 1$, lin(a)l = 1. Thus the assumption of the theorem well defines the set is(a). But then $a \cap (\theta_{(x)}^0; x \in C, x \neq a)$ $\ell = is(a)$ which

implies $\theta_{(\alpha)}^{\circ} \cup \bigcap (\theta_{(\alpha)}^{\circ}; x \in C, x \neq \alpha) = I_{\theta}$, and the theorem follows.

2°. Let the set $\{\theta_{I_n}^o, n \in P\}$ generate a canonical subdirect decomposition of L_U with simple factors. According to Remark 1 of T. Tanaka [5] $L_U \notin \{I_n, n \in P\}$, and thus the set $D = \{d: d \notin I_p \text{ for any } n \in P, d \in L_U\}$ is nonempty. If $|D| \ge 2$, then $\bigcap \{\theta_{I_n}^o, n \in P\} \neq 0_0$, which is a contradiction. Hence $D = \{d\}$. If L_U contains an element a, a > d or a is noncomparable with d, then $d \in I_n$ for some $n \in P$, since $a \in I_n$, and $a \cup d \in I_{n'}$, $n, n' \in P$; a contradiction. Thus $d \ge a$ for every $a \in L_U$, whence $1 \in L_U$.

Lemmas 2, 3 and 4 form a part of the work [7] .

References

- [1] BIRKHOFF G.: Lattice theory, Am. Math. Soc. Coll. Publ. Vol. XXV, 3rd new ed., Providence RI, 1967.
- [2] DILWORTH R.P.: The structure of relatively complemented lattices, Annals Math.51(1950),348-359.
- [3] MAEDA F.: Direct and subdirect factorization of lattices, J.Sci.Hiroshima Univ.Ser.A,15(1951-1952), 97-102.
- [4] PAPERT D.: Congruence relations in semi-lattices, J. London Math. Soc. 39(1964), 723-729.
- [5] TANAKA T.: Canonical subdirect factorizations of lattices, J.Sci.Hiroshima Univ.Ser.A,16(1952-1953), 239-246.

- [6] WARLET J.: Congruence dans les demi-lattis, Bull.Soc.
 Roy.Sci.Liège,34(1965),231-240.
- [7] NIEMINEN J.: About congruence relations of semilattices, submitted to Acta Fac.Rer.Nat.Univ.Comen. Math.

Bept.of theor.mech.
Tampere Univ. of technology
Pyynikintie 2
33230 Tampere 23
Finland

(Oblatum 6.3.1972)