

Werk

Label: Article Jahr: 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0013|log35

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 13,2 (1972)

REMARK ON LOCAL EXISTENCE OF {e} -STRUCTURE WITH PRESCRIBED
STRUCTURAL FUNCTIONS ON A MANIFOLD OF DIMENSION TWO

Jarolím BUREŠ, Praha

This paper is partially connected with my previous paper [1] the definitions and notations of which are freely used he re. Manifolds, mappings, functions etc. are always differentiable of class C^∞ .

Let M be a differentiable manifold of dimension 2, c^1 , c^2 , d_1^4 , d_2^2 , d_2^4 , d_2^2 differentiable functions on M. The results of [1] lead to the following question:

Does there exist an {e} -structure on M for which c^1 , c^2 are structural functions of first order and d_1^1 , d_2^2 , d_2^2 atructural functions of second order ? Or, equivalently:

Does there exist vector fields v_1 , v_2 on M such that $v = \{v_1, v_2\}$ is a full parallelism on M and such that:

$$[v_{1}, v_{2}] = c^{1}v_{1} + c^{2}v_{2} ,$$

$$[v_{1}, [v_{1}, v_{2}]] = d_{1}^{1}v_{1} + d_{1}^{2}v_{2} ,$$

$$[v_{2}, [v_{1}, v_{2}]] = d_{2}^{1}v_{1} + d_{2}^{2}v_{2} .$$

`````

AMS, Primary: 53C10

Ref. Z. 3.933.22

It is easy to see that such an  $\{e\}$ -structure need not exist for any choice of  $c^i$ , i=1,2;  $d^i_{j}$ , i,j=1,2. (e.g. if  $c^1$ ,  $c^2$  are constant, then necessarily  $d^1_1=d^1_2=d^1_2=d^2_1=d^2_2=0$ ).

We solve the problem locally in a neighborhood of the point 0 in so called general case - i.e. we assume that the differentials  $dc^{4}(0)$ ,  $dc^{2}(0)$  generate the cotangent space at 0. Then the functions  $c^{4}$ ,  $c^{2}$  can be taken as a coordinate system  $(x_{4}, x_{2})$  in a neighborhood u of u of u and we can reformulate the equations (1) into the form:

(2) 
$$[v_1, v_2] = x^1 v_1 + x^2 v_2 ,$$

$$[v_1, [v_1, v_2]] = d_1^1 v_1 + d_1^2 v_2 ,$$

$$[v_2, [v_1, v_2]] = d_2^1 v_1 + d_2^2 v_2 ,$$

where  $d_i^i$ , i = 1, 2 are functions of the variables  $x^1, x^2$  on  $\mathcal{U}$ .

Theorem. There exists an  $\{e\}$ -structure with the structural functions (1)  $d_1^1$ ,  $d_2^1$ ,  $d_2^2$ ,  $d_2^2$  if and only if the following two conditions are satisfied:

(1)  $d_{j}^{i}$ , i, j = 1, 2 satisfy the differential equations:

$$d_{1}^{1} \frac{\partial d_{2}^{1}}{\partial x^{1}} + d_{1}^{2} \frac{\partial d_{2}^{1}}{\partial x^{2}} - d_{2}^{1} \frac{\partial d_{1}^{1}}{\partial x^{1}} - d_{2}^{2} \frac{\partial d_{1}^{1}}{\partial x^{2}} - x^{1}x^{2} \frac{\partial d_{2}^{1}}{\partial x^{1}} - (x^{1})^{2} \frac{\partial d_{1}^{1}}{\partial x^{1}} - x^{1}x^{2} \frac{\partial d_{1}^{1}}{\partial x^{2}} + x^{1}(d_{1}^{1} + d_{2}^{2}) = 0 ,$$

$$\begin{aligned} d_{2}^{1} & \frac{\partial d_{1}^{2}}{\partial x^{1}} + d_{2}^{2} & \frac{\partial d_{1}^{2}}{\partial x^{2}} - d_{1}^{4} & \frac{\partial d_{2}^{2}}{\partial x^{1}} - d_{1}^{2} & \frac{\partial d_{2}^{2}}{\partial x^{2}} + (x^{4})^{2} & \frac{\partial d_{1}^{2}}{\partial x^{4}} + \\ & + x^{4}x^{2} & \frac{\partial d_{2}^{2}}{\partial x^{1}} + x^{4}x^{2} & \frac{\partial d_{1}^{2}}{\partial x^{2}} + \\ & + (x^{2})^{2} & \frac{\partial d_{2}^{2}}{\partial x^{2}} - x^{2} (d_{1}^{4} + d_{2}^{2}) = 0 \end{aligned}$$

(ii) 
$$\det ((d_i^i)) + x^1 x^2 (d_1^1 - d_2^2) - (x^1)^2 d_1^2 + (x^2)^2 d_2^2 \neq 0$$
 on  $U$ .

<u>Proof.</u> We shall try to find functions  $\alpha_{i}^{i}$ , i, j = 1, 2 of the variables  $x^{1}$ ,  $x^{2}$  so that the vector fields  $v_{i} = \sum_{j=1}^{2} \alpha_{i}^{j} \frac{\partial}{\partial x^{j}}$ , i = 1, 2 satisfy (2). Substituting in (2) we get immediately the conditions (i) and (ii).

If (1) and (ii) are satisfied, then the vector fields  $v_1$ ,  $v_2$  can be found in the form:

(3) 
$$v_{1} = (d_{1}^{1} - x^{1}x^{2}) \frac{\partial}{\partial x^{1}} + (d_{1}^{2} - (x^{2})^{2} \frac{\partial}{\partial x^{2}} ,$$

$$v_{2} = (d_{2}^{1} + (x^{1})^{2}) \frac{\partial}{\partial x^{1}} + (d_{2}^{2} + x^{1}x^{2}) \frac{\partial}{\partial x^{2}} .$$

Corollary. The necessary and sufficient conditions for the existence of an  $\{e\}$  -structure on  $\mathcal U$  with constant structural coefficients  $d^{\frac{1}{2}}$  in (2) are

(iii) 
$$d_1^1 = -d_2^2$$
,

(iv) U does not intersect the curve :

$$(x^{1})^{2}d_{1}^{2} - (x^{2})^{2}d_{2}^{1} - 2x^{1}x^{2}d_{1}^{1} + (d_{1}^{1})^{2} + d_{1}^{2}d_{2}^{1} = 0 .$$

## Reference

[1] Jarolím BUREŠ: Deformation and equivalence G-structures I., to appear in Czech.Math.J.

Matematický ústav Karlova universita Malostran. nám. 25 Praha 1 Československo

(Oblatum 28.3.1972)