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HAUSDORFF MEASURES OF THE SET OF CRITICAL VALUES OF FUNCTIONS
OF THE cLAss c©»?

Milan KUUERA, Praha

This paper deals with the problem of critical valuea of
real functions. The following assertion is known for functions
of one variable (see [1]): If £ is a function of the class

g , then a, (f(Z)) = 0  where 5 = ﬁ’:, & is s

» - Hausdorff measure and Z denotes the set of all critical
points of the function £ . In this paper there is proved an

analogous assertion for functions defined on some open set in
En

question how big the set of critical values can be in dependen-

. Theorem 4.2 and Remark 4.1 give a full answer to the

ce of the smoothness of our function £ . This result is pro-
ved for A =0 (i.e. for £ & C*® ) in (23, (3],04).
I am indebted to Professor J. Nelas for his valuable ad-

vices.

1. Notations and terminology. We shall denote by .. a
fixed open set in the m -dimensional Euclidean apace E»n. .
Let & be a positive integer number, A € <0,1>, let £ be
a function defined on £1 , Then we write £ e C"a(.ﬂ.) ir

AMS, Primary: 26A16, 58E99 Ref. 2. 751
Secondary: -
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£ has on f) continuous derivatives of all ordersnot ex-
ceeding & and if derivativea of the order & are A -HGl-
derian. We shall denote the set of critical points of the gi-

ven function by Z = {x e fl; g—i— ()= 0, {=d,..,m} 1t B =
nd
= (B, By,eeeyBy) 18 & multiindex then we write 141 =
n
' f

= p1+ vee + {5“ and Dpi' - .Suppose ¥

a.xf1 auf’--. Bx:"“

is a mapping defined on a domain D in E, ,the range of
which lies in E'n .We denote by Wyyeeoy Y the components
of this mapping and write 7 ¢ c**(p) ir Y, € c™Acp) .

The composition of the function £ and of the mapping %

is denoted by £ x ¥ the derivative of this compoaition

’
is denoted by D? (£ x ¥ ) ; the symbol L ¥ denotes

the composition of the function DP% and of ¥ .

If X (X,..,X,) @ E, , then we put

4
LR

Ixl = (,2 x . By JD(x) we denote an open ball
=1 i

with the center in the point x . If x°6 E, , then by xx° we

denote an open segment with the extreme points x, x? .

2. Gepneral remarks
A
Remark 2.1. Let F,,..., F, ¢ ™ en) be functions,
x° € N . Suppose, for each. i = 4,...,» , there exists

such that Lt (x°)Y#% 0, F.(x°) = 0 . Denote
Ix; ’ e

No{xa«flyF(x)= 0 foreach i =4,...,5% . Then

there exists a number d <m , the balls D(x°) ¢ N ,

D(g®) e B, and a mapping & « C"'a'(D(gf)) such
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that & (¢°)=x°, NND(x°) c §(D(4°)) c L. and

such that either d = 1 or

3

a@é

(1)

(F; x®) (¢°)= 0 for each i = 1,..., 4 ;

a‘-. 4,.00, dv .

Proof. We can choose a submatrix I of the matrix

aF; . é:'l,...,m,
= ans (x )) .

M with the following proper-

vE A, b

ties: cet I # 0 and rank I = max (ramk S) , where maximum
is taken over all submatrices S of M such that ramk S<m .,

We can suppose
, 3.--4,..., ) 2
I= oF, (x%) where < n <m,n & b .
’ ’
ax?’ 1’/- 4.-0-,"

From the implicit function theorem it follows that there
exist the balls D(x°) c QL ,D(¢’) ¢ E, , where d =
=m-x and the functions @, ,...,Q € c*2(p(y®) such

that

(2) F;,(?»i (3),0e., P (y), 41"""“'01-.&) =0

for imAd,.i0, 0 , 4= (g, by ) @ D(y%)

X, )

(3) if x e D(x°), x e N, then X, = @, (X, ,..., X,

for L-4,lla,n

Detine & (y) = (g (y),..., 9, (4), 4,,..., 84 ) for
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g =(y,,.,4,) € D(4°) . By (3) we have
NND(x°) c€ $(D(4°)) . The condition (1) for © =

=4,..,x follows from (2). If d > 1 , then ramk M =1

and the vectors (-Z—EJ‘- (x?), «s —a;*- (x")) for i =
1 m

=x+4,...,5 are linear combinations of

( x°), ..., %—}(w)) for i = 4,.

From here the condition (1) follows for 4+ = w+1,..., 5

too.
Remark 2.2. let P g C‘ () be a function, L e L,
:DDF(.x")-O for each Q< Ifl££~1, Suppose D 1is a
ball in Ed ,d &£ m . Let ye c”) be a mapping,

y(D) e Q,2°€D, y(2°) = x° . Denote

9y,
C‘,-‘_.%W (::44; l a:; (x)l)<+ P2
du Aryd

Then for each z € D  there exists ' € zz° andaC>(
(C dependa on C,1 and £ only) such that
| Ply (2))-Fly(2°)) & c.mzi‘.‘vn“rc:rcz'n Nz - 2°0*

4 —

Proof. There exists =x € zz° such that

: i 3
- oy o 2 1 e T
IPCy (2)) - Fly (29 l,’?" 3z; (Fxy)(zh,(z;-25)]

& & or 4y 2 " "
.;%g:ng-a-;:wcz)).-a%cz>.cz$-z,.>1¢
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€cC . %l” (Dl Nz-21 .

i1

In a similar way we can estimate

|-——w( )| -| ~ (¥ (! ))--——-(w(z"))
= 8*F 2 1 o
€C .2 |5, 3w (Yix N| .12 - 2%

where Ilx°- 27 & llz - 2%l . Further we can estima-

2
a5 (y (z2)) etc. After a finite number of
0«; aﬁ(i

te

steps we obtain our assertion.

Remark 2.3. (Hausdorff measure.) Suppose A is a sub-

set in Em. and Ao is a positive real number. For each
[

A . , » : s
¢ > 0 define e (A) = mf‘;a (MA,L) , the infi
mum being taken over all countable coverings {Ai }::4 of A
such that deam A, < £ . The number (.vb(A) = m+ e (A)

is said to be 4 -Hausdorff measure of A , If w, (A) =0,

then we say A is 4 -null.
It is easgy to see: if A is A4 - null, then A is n-

null for each % >4, If » = m , then we obtain Lebesgue

measure.

Some estimates for functions of the clas Ch’a'(.ﬂ.)
Theorem 3.1. Let £ e Ch'a' () be a function. Then

there exists a countable system of sets {M }” such that
t'tw1
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(4) Z\ tg-)4 Mt is countable;

(5) for each positive integer + there exists L > 0 sauch
Re A
that [f(x ) - £(x,)) & C Ix ~ X,

for each x,,x, € M, .

Remark 3.1. A similar assertion is proved in [2], but
for A =0 only. A.P. Morse proves it by using induction
for m. + M ., Theorem 3.1 can be proved in a similar way. But
in this paper, a constructive proof is given. This proof is
based on the fact that each set 'M‘t lies in some hyperpla-
ne; this hyperplane is characteriged by the mapping

® = @4 X oi0 X ép (on some neighborhood of & point

%% ) trom Construction 3.1 and Lemma 3.1; the number dy, is
the dimension of this hyperpiane.

Construction 3.1. Suppose x° e Z is a fixed point.
We shall associate a finite number of mappings ¢1,..., Q,ﬂ
to this point.

Let %, be the smallest entire number such that
D*E(x,) = forall Ifl & R~ A, . If S =0, then
we need not any mapping, that means our hyperplane (see Re-

mark 3.1) has dimension m .

9
axg
’?.a ﬂa"‘d" ‘@, |ﬂ|-h-h4. Denote.Z&"-{.xﬁz;

D“f(x’) & 0 for some

Assume h1 > 0. Then

B
D7E(x) = 0 for all INI & s - h1? . From the implicit func-
tion theorem it follows that there exist the balls
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D(x°Y e L ,D(gy% c Eq,  (dy < m) and a mapping
Q‘cch"’a (D(4°)) such that

(6) Zp nD(x*) 3, (D(yNec o, § (%) = x°

and such that either d.1 = 4 or

N (PP x9N (4 =0

%4
for each Il = k- Kk, , F=4,...,d,

4 S .
(see Remark 2.1; we set F. = D* £ | where &, i =1,..., »

>

are all nullindexes such that |x%( = % - A, ,

D‘iiCx")*D for some 4 ). Define D, = D(4°) .
oxy C4 1 i o

If d.‘1 = 4, then we set 4 =4 and we conclude our const-
ruction.

Suppose d’q > 4, Let ka be the smallest number such that
b2< Jh,' and

4
(8) DO x §,) (g) =0

for each |p7I =h-hk, , Il & k -k,

for ny = g.° ( @ denotes d -dimensioral multiindex in (8)).
If 3;,1- 0 , then we set f = 4 and we conclude our construc-
tion.

Suppose &, > 0 and denote

Lh, i, = AX€ 20 5 x = @, (4) , (8) is valid}.
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[ 4
B B, 3, 1P =t Ipl=to—to,, 164 6d, .

We have 3 DDCDM€ *xd V(y?) % 0 for sonw=
] 1%

We can, by using implicit function theorem (analogous-
ly as in the case of @1 - see Remark 2.1) construct the
° :
balls D(x°) c £2,D, c Ed.z, (d, < d.1) and a mapping

8, ¢ C‘."“ (D,) such that

(6°) 23'1"‘2 ND(x%) e (I)4 3 @2(])2) ca, Qz (%) = nr"
and such that either d‘z =4 or

. @ {54 0) 0
(7°) (D¥(D £*@1)x§1)(nr =

vy
for each A"l = - Mo, Ipl=Rey=te,, F=1d,0,d, .
Ir d.,_a 1, then we set f = 2 and conclude our construction.

Suppose d‘z > 41 , Analogously as ""z ,we can take the smallest

entire number ka such that 9@.,’ < hg and
. B, 2. 0"
(8°) DYDY £*§4)*@2)('v—)=0

for each l(&‘ | o - R,
B2 = doy — e,

Bl & %, - %, ,

and for » = v»° ( 371, 32 is m-dimensional,d_ -dimensional,
? ’ 1
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d, -dimansional multiindex, respectively). If A, = 0 . then

we set . = 2 , Assume b, > 0. Then we can (analogously
as Zk‘,; Q., . Qa ) construct the asets zh‘,,hz,h, "
<

zh,,,hz,h” %, oo ond mappings &, , &, ,..., res-
pectively. It is easy to see that after a finite number of

steps we obtain the following assertion:

Lemmg 3.1. To each point x°€ 2Z |, a finite number
of mappings &, ..., Qﬂ and a ball D(x°) can be as-
sociated such that (we use the notation from Construction

3.1)
a
(9) q;z ec"‘ (D), D, is a ball in }:% , =4, £,

where ly, < R,  <..<k, £k; dn< dﬂ_-.,<'-'<d-4 =m;

(10) 3, (D) € Dpoyy Ly dog ND XV &y ko x BB 2,
LAy g

a1 PP (0P P"E X 8,0 K By ) )% Bp) (w) = 0

for o= v°, (P, x.0. x @y (w®) = x%) ,
[
13" 1= S = de,, P21 =t =By, IF°1 = By g = Sy,
l(3|éhl-aﬁand for L =4,ce -1

if d, > 1, then this holds for 2 = fo , &, =0, too.

1

Let ua define & () = Q1 LTV Qﬂ' («) . for veD,.

Lemma 3.2. There exists a finite number of sets
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% : .
Z‘, veey Z%  such that ’.L:Jq Z* = Z and each set Z# con-
tains all pointa x € Z of the same type in the follow-
ing sense:

1 2 j 1 1 2 2
if X ’ X € Z" and if é.' 9704 b,ﬂ,’ ; ¢4 t AR | Q@z;

respectively, are the corresponding mappings associated to

the points X respectively, by Lemma 3.1, then

10 %29
o, = 1,, hl = lb: and theimplicit function theorem
is used for the same combination of variables in each step

of Construction 3.1 (i.e. the domains of éi . Q: lie in
the same subspace of E, , <= 1,.., o, =, ).

Proof. The assertion follows from Construction 3.1 and
Lemma 3.1.

Remark 3.2. Assume x" x? ¢ z# (7 fixed). Let
él - : , vm i, n be the corresponding mappings
(see Lemma 3.1, 3.2) with the domains Dl , D: . Then

1 2 1 2 -
$, = & on D; ND; . It follows from the con
1

struction of these mappings, from the fact that X', x? e

P Z“' for the same 7 and from the unicity of the impli-
cit function.

Remark 3.3. Assume x° ¢ Z# . Then the condition (11)
is fulfilled for each + e Dy such that § x ...x § (v)e

[ ] Z", This follows from Remark 3.2 and from the validity
(11) for mappings associated to the point X = Q1 % .o Qz(vJ ,

Remark 3.4. Suppose x° e 7% . Then D(x°) NZ% c
€ $(D,) . This follows from (10), because
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D(x°)N2Z¥c Ztey, ooy My ~ TOT 80D sat Ztey s ortep

(see Construction 3.1 and Remark 3.2).

Proof of Theorem 3.1. An open ball ) (x°) from Lemma

3.1 corresponds to each point xo € Z¥# , These balls cover
Z" and therefore we can select a countable covering
(D(x*)?:’;1 of the set Z% . We have a finite number

of sets Z? ., Hence, it is sufficient to prove: if x’ €

€ Z% is a fixed point, then there exists a set M c

® A
c D(x®) N Z%  such that 1£(x") = £(xD) 1 & C IxT- x21™*

for each x‘,xle M and the set Z# N D(x®) N M
is countable.

Let x° & Z"' be fixed. We shall use the notation from
Construction 3.1 and Lemma 3.1. Denote A = {v €D, ; d@rle

1D(x)NZ#3, M= P (A’ NA), where A’ is the

set of all limit points of A , By Remark 3.4, we have
D(x®) N Z# e $(A) , the set AN A’ countable,
therefore D (x°) N Z#\ M is countable. Suppose

1

,oxeM, v, vreA,dwN=x!, (v) = x . Ve have

an(.x) =0 for 18| & fe ~ h4 (see Construction 3.1
and Lemma 3.2 - we have X, x° e Z" for the same ;. ).
By Remark 2.2 (we put Fw f, y = d )

15 -£Cx) &C 3 IDPECH ol M- 1™,
lﬂltﬁ-hq

(12)

B S
- CME.._MKD Ex @0 (P %0 x @y (02N Netanr T,
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where v’ ¢ v'v , Lemma 3.1 and Remark 3.3 imply
1
DDV Ex ) (P ke Bp ¥V 0 for 107 = A - K,
Ipl £ h4- e, -
From Remark 2.2 we obtain (we put F = P £ X d ,

v=dx..xd, )

1
13) DM £ x ), k... x (w2 £

e,
£C = 1O A 8 (@K kWO U™,
1821 s b de, 1

o2~ vl & lo?- 2 || . Analogously, we can proceed: we shall

2 a4
estimate Doa(l)‘ﬂf* Q‘,) * Qz,bﬂ’CD" (PP £ x Q,) * &, x ég

etc. After f -4 steps we obtain altogether (from the es-
timates (12),(13) etc.)

i 2 1
(14) 1£(xM-£x)&C = ”lnf‘(...(jo‘(p"fmbq)*éz)...

yorey

LK Gy (POt R

the sum is taken over all multiindexes I[&‘I = h-d, ...
ree y lﬁ“l = k@--q - hﬂ .

1f d’{; > 4 . then from Lemma 3.1 and Remark 3.3 it

1

follows

2
PP DM D e m @Ik B k) X BN () = 0,

YU A SR T LA ST P [ 1 I N

Hence, we obtain by using (14) and the mean value theorem
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1£(x1) - £(x)| £

4
<c 2 "ML P OMEx ) x 8, R

FXIIPY

PPN TR At NI P APV L

pﬂd-

£C V™21, o' - v ™ & Clov'- IR+

(the sum being taken over all multiindexes |3"|= & =ty

~ 1
ey 13T = Ay, - hﬂ,lﬂ‘“ |= 4, ), because the functions in
the middle member are A -Holderian.

Suppose dm = 41 , The functions which are in the right
hand side in (14), are the functions of one variable and
they are equal to zero on each point from A (see Remark
3.3). But we have o € A’ and from here we see that the

derivatives of all orders not exceeding hﬂ of these func-

tions on o are equal to zero. Hence, we can conclude the

proof analogously as in the case d.ﬁ >1 .

4. Hausdorff measure of the set of critical values

Theorem 4.1. Let £ be a function, £ € ¢'¢Q) ,

% Z 1. Let A be a compact subset of Z and

(15) 1£(xN=£(x) £C.Ux"-xU"™
for each x’,x & A, where C > 0. Then £(A) is -;:— -null.
Proof. For each positive integer N we shall denote

;K
by {I: }"14 a system of all intervals of the type
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<M Nl e DN xnx e N1 Uy e INT)
(m -dimensional cubes) which intersect the set A ( %,
are entire numbers). Set J:‘ - I: NA . We have
L*)J:-A , therefore gfcagv = £CA) . From (15) we
obtain diam £ ( D:) €« C.N"" . By the definition

of Hausdorff measure we have

By s .
(16) @g (£CA) & tim 5%[%“32)3% ;

Let € > 0 be arbitrary (but fixed). Let us divide the

sets 33 for each fixed N into two groups:

(1) diam £0O5) & eN7"

(1) diam £C35) = e N7,
By v‘: ) va reapectively, denote the number of sets
which lie in the group (i),(ii). Put » =» + »® .

Let us suppose that we have proved the following assertion:

(17) v = 0N™) , »® = o (N™) .

Then

e i,,% : )%
2 [diam £CI 11" = 3 [diam £(J 1%+
#=1 Fe)

+ ;Z (diam £0I51% & 2V cel® 4 »Pce N g
Iy 6(te

) p-m (2) -,
& e%v,‘ N+ Cwy N .

- 346 -



The second member in the right hand side converges to
zero (if N— e ) by (17) and the first member can be ma-
de arbitrarily small by a convenient choice of ¢ . From he-

re and from (16) we obtain £(A) is % -null.

Hence, it is sufficient to prove (17).

Suppose

(18) there exists dJd > 0 (dependent of € only, indepen-
of N, 3 ) such that m”CJ:) & (4-F)N™

for each J:' € (ii) (where m_ denotes the m -di-

mensional Lebesgue measure).

Set ‘A'N - N-™ - m, CA) . We have AN—-b 0 , becau-

se A 1s compact. From here Yy = O(N™) . We have

m, (A) & vaNm+ (1- d')v,f”N""’ g

hence
3+ 50 my AN o (N™) & 0+ (1= F I 9P 4 o (N™)
From here d’v:‘” =c(N™), i.e »;” = o (N™) , hence

(17) is valid. Hence, it is sufficient to prove (18).
Let JN" be an arbitrary set of the group (ii). There
exist a, & e J¥  such that diam £(I7)= £(4)-£(a)> EN"

From (15) we obtain

(19) | EC’) —£Ca)| B -‘ieu"‘
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for each

£

1
: % -
(20) o/, t'e I¥ , la’-al< -:-'6) N“,“r'-xrﬂ<(-f'z) N

Consider two points a’, &’ which fulfil (20) and
o ’%’ A A & f . Then there exist the open aegments
>

— L4
$;, ,4=4,2,... osuchthat dW'NA= U S, .

Denote the extreme points of these segments by a,‘; > B P

We obtain
-] 2 4
1£(&%) -£@’)| & “24 (£ (o) -£Ca®| £
(- [ -]
£ C. S (diam 5,)° & C. (,S diam $;)* =
4“1 LR |

= C.Lm (2" \NAI".
Ir mﬂ(w’ 2'\NA) < (—igc-)*N" , ‘*hen we obtain

1£(&*) - £Ca’)| <« -45'— e N°" . But it is not possible by
(19),(20), hence
1 (e *
(20 i¢ Va'-al & T (=) N, ﬂb’-k“é%(—i’—) N
@B \NA%0, then m (@& \A) z%(%)" N
If &' NA=g@ , then the last inequality holds, too.

It is easy to see there existas C4 > (0 (dependent of the

dimension m only, independent of j, N ) such that there
exist a’, #°¢ Iy which fulfil the conditione

4 .

0 s N1 i £ *. -4 4

Da?, C e* N )CD(Q"#(C) N=Y 0 1Q

P
3
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%, 1,8k -t

D& C ™ N e D(a, 2 (NN I .

Let X be a convex closure of the set
D@, ¢, ebN) uD (8%, C ek N1y .
By using (21) we obtain

i
ma(KNAY 2P (£)5N1
where P is the volume of (m -1) -dimensional ball with
4

diam P = 2. (Zl‘_e".N"’1 » It is easy to see from here

mn (KNAY 2 C_e® N

where C depends on C and m only. Further,

5
My CITA) 2 oy, CKNAD

It ia sufficient to put o = C‘ e,% and the asser-

tion (18) is proved. This completes the proof of Theorem
4.1.
Theorem 4,2, If £ e C®?(0) ia a function, then

the set £(Z) is -null,

n
R+
Proof. It is easy to see that we can suppose that the
sets M, from Theorem 3.1 are compact. Our assertion fol-
lows from here and from Theorem 4.1,
Remark 4,1, If »< )Tn'i_a' ,then there exists a func-

tion from the class C*%  asuch that Uy (£C2I) >0
(see [1]).

Remark 4.2. If £e C® (i.e. £ has continuous de-
rivatives of all orders), then the set £(Z) ia 4 -null
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for each & > 0 . This followe from Theorem 4.2. But the
set £(Z) need not be countable. We muat demand €

is real-analytic to obtain such a strong assertion (see

(5.
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