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NON-CONSTANT CONTINUOUS MAPPINGS OF METRIC OR COMPACT
HAUSDORFF SPACES

Véra TRNKOVA, Praha

The aim of the present note is to state and to prove
the following theorems:

Theorem 1. There exists a class. M of connected
metric spaces such that all the spaces from [M together
with all their non-constant continuous mappings form a ca-
tegory that is isomorphic to the category ‘(4, of all
graphs. Every continuous mapping between the elements of M
is a contraction x).

Theorem 2. Let there be no measurable cardinal. Then
there exists a class X of compact Hausdorff spaces such
that all the spaces from X with all their non-constant
continuous mappings form a category isomorphic to the cate-
gory ¢, of all graphs.

Theorem 3. There exists a class I of metric conti-
nua such that all the spaces from 1. and all their non-
constant continuous mappings form a category isomorphic to

the category ‘%, of all finite graphs. Every céntinuous

x) A mapping £:M,p) — (M)@") is said to be a contraction
iff o'(£(x),£(y)) £ @(x,q) alvays .
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mapping between the elements of L is a contraction.

Corollaries. Denote by (Cat M (ar Cat X  or
Cat L ) the category of all spaces of M (or X orl,
respectively) and all their non-constant continuous map-
pings.

a) Since every algebraic category can be fully embed-
ded in <} (see [6]), it can be fully embedded in (at M .

b) Every small category can be fully embedded in <€}
(see [8]), consequently in Cat M . Particularly, every
monoid can be represented as a monoid of all non-constant
continuous mappings of a metric space into itself, which
strengthens a result from [4].

¢) If there is no proper class of measurable cardi-
nals, then every concrete category can be fully embedded in
9 (see [5]), consequently in (Cat M . Particularly, a
large discrete category can be fully embedded in ‘q— (proof
see in [9]), consequently there exists a proper class of
metric spaces such that every continuous mapping between
two of them is either an identical mapping of a space onto
itself or constant.

d) If there is no measurable cardinal then a) b) c)
are true, replacing Cat M by Cat K and "metric spa-
ce” by "compact Hausdorff space".

e) Every finite category can be fully embedded in %
' (proved impl:lcitiy in [8]1), consequently in Cat L .
Espetially,every finite monoid can be represented as a mo-
noid of all non-constant continuous mappings of a metric

continuum into itself.
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f) Since every continuous mepping between the elements
of M (of L ) is a contraction, every monoid (or fini-
te monoid) can be represented as a monoid of all non-con-
stant proximally continuous or uniformly continuous or Lip-
schitz mappings or contractions of a metric space (or met-
ric continuum, respectively) into itself.

Proof of Theorem 1. I. We recall that ¢  ia the ca-
tegory, the objects of which are all graphs G = (X, R)
(i.e« X is a non-empty set, R € X x X ) and morphisms
are all compatible mappings (i.e. if G= (X,R), 6'= (XX’
are graphs, £: G —> G’ ia a morphism of ¢ iff
£+ X ~» X’ is a mapping with (£ x£)(R) c R’) .
The category ‘g— is isomorphic to a full sub-category of
the category ‘l{—o of all connected graphs without loops x)
and all their compatible mappings (see [7]).

So we caﬁ prove Theorem 1 replacing ¢  instead of €4
in it.

II. Lemms 1. Let a continuum X be a subspace of a
Hausdorff space Q , a,&reH , @ & . Let M= H -
- {a,& 1 be an open aubset of G .Let Z be a continu-
um, £: Z —> (B be a continuous mapping. Then there ex-
ists either a component C of the set £-'(H) such that
a, e f£(l) or a continuous mapping £: 2 — G

x) We recall that a graph G = (X ,R) is eaid to be con-
nected if for every a, & ¢ X (not necessarily diffe-
rent) there exists x,,.., «x, such that a = x,, &= X,
and either <x; ,,x;>€R or <x;,%x; 4> 6R, i~
= 4,.,,.,, m . Every pair < x, x > € R  is said to be a
loop of G ,
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such that % (x) = £(x) whenaver £(.x) € @ -M,
F(x) € fa, &t whenever £ (x) 6 M .

Proof. If either a ¢ £ (Z) or ¥ & £(E) ,
then the lemma is trivial. Let a , & € £(Z), Let there
exist no component C of £-'(H ) with a,& € £(C).
Put Aw£a), B= £ (&) .

1) We show that every component L of £'(H) inter-
sects AuUDB . let 1. be a component of £~7(H) with
L ACAUB) =4, Then there exiata a closed-open
subset G of £~1(H) suchthat L = G c £"(C(H) ~
~(AuUB).Then G is closed in Z and, since G is
also an open subset of an open £-T (M), G is open in
Z . But Z is a continuum.

2) Denote by &, (or &5 ) the aystem of all compo-
nents of £-7(H ) that intersect A (or B , respective-
ly). Put B, = UK, , Py = Uf&f’a . 1) implies £~1(H)=
=B UuP, and P, n Py, = 4 . Ve show that bath ¥,
and P, are open in £17(H) . I xe P, , then x €
€1l for aome conponlnt' L € £, . Then there exists a
closed-open subset G of £ (H) such that LS G <
c £77CH)-B . Then necessarily G c P, , thus P, is
open.

3) Now define

F(x) = £(x  whemever £(x) € B - M ,
f(x) =a whenever x € P, ,
T(x) = & whenever x & Pp .

One can see easily that Z is a continuous mapping, satis-

fying the required conditions.
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III. Conventions. a) If M is a metric space, I.Ml
denotes its underlying set.

b) Let M be a bounded metric space with a metric «
and a diameter d . Let R be a set, £ be a real number,
£ & d . Then by 'r-\:/n (M x4rnt) we denote the met-
ric space with the underlying set ,‘L¢J’t C(IMI| x4rn?) and
the metric, say €, defined as followsa:
6k, nd,<ap,nd) = (X, 8), 8K, D>, <y, n'>) = £
whenever x 4 n’ .

c) Let M = CIMl,ac), M= C(IM[,x’) be met-
ric spaces, @: |[M| —> IM’l Dbe a mapping onto (M’| .
We say that M’ is a metric factar space of M given by
@  whenever for every x, 4 € M| «'(x,4) =
= 4'01.(4% o (a,,4&;) , where the infimum ia taken uver all
chains (Ca,, %, ,...,a,,4; ) such that @ (a,)=x, @(&, )=
=n and @(; J=g(a;), 4+ =41,...,m . In fact,
M’ is a factor-object of M in the category of metric
spaces and contractions.

d) In [1] a space ,M.1 with the following properties is
constructed:

M, is a metric continuum;

if Z is & sub-continuum of M , £: Z —> M, isa
continuous mapping, then either £ is constant or £f(x) =
=x forall X € Z .

The symbol M1 is kept for this space, @ for its metric,
d for its diameter in the sequel. The subspaces of M, ‘are
alwaye considered as metric spaces with a restriction of @ .

e) Let H, JC,l . J(Q be three pairwise disjoint subcon-
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tinua of M 1 that will be fixed in the sequel. Then the
following is true for the subspace H u K Y K g of M
(x) If Z cHuK, v K2 is a continuum, £: Z —>

— Hou K1u Ka ia a continuous mapping, then either £ is

constant or £(x) = x for all x € Z .

IV. To prove Theorem 1, we shall construct, for every
connected graph G without loopa, a metric space PG (M,
then, will be the class of all these PG ). First, using an

idea from [3] a space Q@ (a subspace of the T, deacri-

bed later) is comtructedérqplacing the arrows of G by is-
sues of H . More precisely:

Choose a, € H , a +# & . Let a connected graph
without loopa G = (X, R) be given; denote by I, or
, the firat or the second projection.

The metric space QG is defined aa followa: Let

?:n.LsJR“H‘ x in}) — I@.GI

be the factor mapping defined by the following equalities:
P, 2>) = @(<a,n’>) whenever x,x'e R, m(r)=

d
=m(n’) . let G, be a metric factor space of,‘}/K(H x {rn})

given by g . For every ~ 6 R , x e H put x, = @ (<x,n>),
The set T = {a, ;o6 R3Y v {l, ; reR? is a clo-
sed discrete subset of Q. -

Lemma 2. Let either Z = H or Z = X, or Z = X,
£€: 2 —> GsG be a continuous mapping. Then either £ isa

’

constant or Z = H{ and there exiats ~ € R such that
£(x) = x, for every X € Z .
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Proof. Put H, = ¢g(Hx{r3). I£teT put

A= ¢ Hy, St, = (A -T) U 4t3, D =A AT .

Put S = TN £(Z2)

1) If 8 = g, then, since £(Z) is connected and
(%) holds, £ is conatant.

2) et card S =41 , say S =1is3. Since £(32)
is connected, then £ (Z) c St, , d.e. f = 4 ¢ £’
where 4 : Sth —_— 6\.G is the inclusion. We prove that £
is a constant to 4 . If there exiata 4 ¢ St, - {»3 ,

4 & £(Z) , define the mapping g: Sth—b Stb such that
g (x) = x whenever x € H,,_o - T where 2, ia the
)

element of R with 4 ¢ Hy,

gx) =5 otherwise.

g is continuous and (%) implies that g o £’ is con-
stant, which is a contradiction.

3) Let card S > 41 . One can see easily that the
mapping g : Z —> Q/ such that

g (x) = £(x) whenever £ (x) € H, with a, ,
b, e £(F) ,

g (x) = a, whenever £(x) e H,, 4, & £(Z) ,

g (x) = &y whenever £ (x) € H, ,a, & £(Z2)

is continuous. Since Z is compact, the set S =£(8) n
NT=g(Z)A T is finite. Let L =44 ,,...,4, 3 Dbe the

set of all triples £; = <»sx;, » , H

ey 2. such that
’

’
P,k &5, hkn,, n €R, b, »; & Hep,
end there exists no component C of the set g~' C(H, R

with »,, »; € £¢(C) . Now we use Lemma 1 n-times,
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wepit g, =g, g; , = 'q",’-' . The continuous mapp-
ing -7 2 —» aG has the following property:
If for some x € R  the set g, (Z) n H, is

non-empty, then either

8) Qun(E)AnH, c e, , &} or

b) there exists a component C of q;' CH,) such
that a,, & e g, (C)
Since @;,, (Z) is connected, then necessarily there ex-
iets %, € R  such that b) holda for it. Then (x ) imp-
lies Z = H and g, (x) = X, for ell x € C .
Particularly, g, (@) = An, ;s G (&) = b',," , i.e.
a, & ¢ C . Conaeguently, there exists exactly one such
k, . Since g, (Z) is connected, ¢, (Z) c Hp, -
Then (% ) implies %.,("‘)"“mo for all x € Z = K .

Then, clearly, ¢, = Fnogy =200 =G, =g = £ ,

V. Let M,X,, K,,a, & have the same meaning as
in IV, Moreover, choose €116, € H such that
cand fa,,¢,,¢,% = 4 and chocse f;, d;

05](;',

4 = 4,2, p, 4 d; . The metric space P, is defined as
follows: Let '

s u_k‘JRCIH.u.Kqu Kyl x {3 —> | P |
be the factor mapping definoq by the following equalities:
Y (< rd) = y(<a,r’>) whenever r,r’e R, m(r) =
= 1[:‘ (x’) $

y(<d;,nd)=y(lc; ,n>) whenever r eR, {=1,2 ;

?

Yy, )= y(p,,#>) whenever x, r’e R
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The space P; 1is the metric factor space of
d
ZYRCCHUK 0K x{ni) given by ¥ . The space

Gs; is a subspace of P, and ¥ ias an extension of ¢ .

Put H, = vy (H x {nit), X;, = 9 (K; x4nt) ,

Y = ¥ (<4, n>) . The paint p, =mn,,  will be al-
80 denoted by f1. . Put T = fa, ;2 €Rt v i ;reR}i,

D;-=4d;, ;xeR3,4i=41,2 . Clearly, T,uD, uD,
is a closed discrete subset of PG and there is a bijec-
tion

Ag: X —> T,
onto T, such that for every x € X either A, (x)= a,

where ‘n;‘(n..)sx, or Agz (x)= &,  where min) = x.

Lemma 3. Let either Z = H or ZE= K, or Z =
= K,_ ‘Let £: Z —> P, be a continuous mapping. Then
either £ is constant or there exists n € R such that
£lx) = X, for all x € Z .

Proof. 1) Let n, ¢ £CZ ) . Then use the retrac-
tion g : B, - fpgl—> Gz with ¢ K- ined)=1d,, 3,
Lemma 2 and (% ).

2) Let n, € £(Z2). If £(Z) A (D, uD,) =4,
then £ 1is constant. (It may be proved analogously to 2) in
the proof of Lemma 2.) Let S = £(Z)n (D v D, ) & 4 .
Define g : Z —> P, as follows: g (x) = £(x) whene-
ver £(x)e Bg or (£f(x) € X; ) & (d;, €£(Z)),
g (x) = ps otherwise.

Then g is continuous, @ (Z) A (D, v D,) is finite.
Let L. = {t;, ..., t;‘;_‘} be the set of all
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points of g (Z) A D, such that for no component
C of ¢g-"(K;,) is pg,dy, €£(C) (i =1,2) .
We use Lemma 1 (m,,‘ + ’"‘z) ~timea and we obtain a continoous
mepping Hh : Z —> F; with the following property: if
nelR, 1 ei141,2% , then

a) either h (Z) n K;, cip,d;, ¥ or

b) there exists a component C of the set 2" (Xi,.)
such thet p, ,d. € A (C) . One can see easily (analo-
gously to the proof of Lemma 2) that the case b) is true
precisely for one couple < x,,4,> € R x {1,23 .
Define a mapping £ : Z —> K;p 4 such that £(x) =
= A (x) whenever W (x)& Ky , , £(x)=4d; .,
otherwise. Since £ is continuous non-constant, then neces-
sarily Z = K;  and L (x) = Xy, for all x & Z .
But then £ = h = g = £ .

VI. Let G = (X,R), G'=(X",R’)  be connected
graphs without loops, f: G —> G’ be a compatible map-
ping. Define a mappiné f:P, —> P, aa follows: if
=< ,x,>€R, xeHuK, vK, , put T(x,)=
=, where ' = <£Cx),f(x,)> € R’ . 1Itis
easy to see that every £ is a non-constant contraction.
Conversely, let g : P —> Pz, be a continuous mapp-
ing. We want to prove that either g is conatant or ¢ = F
for some compatible mapping £: G —>» G’ .

1) Firat we prove: If there exists £ € R such that

the restriction 9’/}[% or 9/1(4,4. or 9’/](2,‘ is

constant, then - is constant. But it followa essily from
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Lemma 3 and the fact that G is connected.(To prove it de-
note by 4 the value of 9’/}1& (or ¥/, or 9'/1(5,‘

respectively) and discuss the cases » = nn, » € Q5 ,
&P -40gunt )

2) If g is not consatant, then for every x~ € B the-
re exists ~’e R’ such that g (x) = x,, for all xe
€ H . Then necessarily g (T;) c¢ Tgz, . If we put
£= 23" 0og oA, then £: G —> G’ is a compatible
mapping and g = ¥ .

VII, Now it is evident that the clasa M  of all the
spaces PG , where G runs over all connected graphs with-

out loops, has the required properties.

Proof of Theorem 3 is, in fact, the same as the proof
of Theorem 1. It is only necessary to notice that the cate-
gory qf of all finite graphs is isomorphic to a full sub-
category of the category ‘q-ﬁ of all finite connected
graphs without loops (proved implicitly in [7]). If G is
a finite connected graph without loops, then clearly the

space P; is a metric continuum.

Proof of Theore .
I. Lemma 4. Let M be a realcompact metric space,
xefM - M . Let X, € AM , x = Lim x, .

m ~» co
Then there exists a natural number m , such that Xy = X

for all m 2 m

.

o
Progf. It follows immediately from Theoremw %.11 in [Z2]).



II. Lemma 5. Let M , M be metric spaces, M con-
nected, M’ realcompact. Let g : AM —> 3M’ be
a continuous mapping. Then either g ia conatant or
g (M) c M .

Proof. Let g (x)e M’ - M for some x e M.
Put A=Mng' (g (x)) . A is a closed sub-
set of M and Lemma 4 impliea that A is apen. So A =
=M, g ia conatant.

III. If there is no measurable cardinal, then every
metric space is realcompact. Then it is easy to see that
the class K = {3M, M e M3 has all the required

properties.
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