

Werk

Label: Article Jahr: 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0013|log29

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae

13,2 (1972)

NON-CONSTANT CONTINUOUS MAPPINGS OF METRIC OR COMPACT HAUSDORFF SPACES

Věra TRNKOVÁ, Praha

The aim of the present note is to state and to prove the following theorems:

Theorem 1. There exists a class M of connected metric spaces such that all the spaces from M together with all their non-constant continuous mappings form a category that is isomorphic to the category U of all graphs. Every continuous mapping between the elements of M is a contraction x).

Theorem 2. Let there be no measurable cardinal. Then there exists a class K of compact Hausdorff spaces such that all the spaces from K with all their non-constant continuous mappings form a category isomorphic to the category of all graphs.

Theorem 3. There exists a class $\mathbb L$ of metric continuous such that all the spaces from $\mathbb L$ and all their non-constant continuous mappings form a category isomorphic to the category \mathscr{Y}_f of all finite graphs. Every continuous

x) A mapping $f:(M,\varphi) \to (M',\varphi')$ is said to be a contraction iff $\varphi'(f(x),f(y)) \leq \varphi(x,y)$ always.

AMS, Primary: 54H10, 54G15

Ref.Z. 3.963.5, 3.969

mapping between the elements of L is a contraction.

Corollaries. Denote by Cat M (or Cat K or Cat L) the category of all spaces of M (or K or L, respectively) and all their non-constant continuous mappings.

- a) Since every algebraic category can be fully embedded in Cat M.
- b) Every small category can be fully embedded in $\mathcal{O}_{\mathcal{F}}$ (see [8]), consequently in \mathcal{C} at M. Particularly, every monoid can be represented as a monoid of all non-constant continuous mappings of a metric space into itself, which strengthens a result from [4].
- c) If there is no proper class of measurable cardinals, then every concrete category can be fully embedded in G (see [5]), consequently in C at M. Particularly, a large discrete category can be fully embedded in G (proof see in [9]), consequently there exists a proper class of metric spaces such that every continuous mapping between two of them is either an identical mapping of a space onto itself or constant.
- d) If there is no measurable cardinal then a) b) c) are true, replacing $Cat\ M$ by $Cat\ K$ and "metric space" by "compact Hausdorff space".
- e) Every finite category can be fully embedded in \mathcal{C}_{ℓ} (proved implicitly in [8]), consequently in Cat L. Especially, every finite monoid can be represented as a monoid of all non-constant continuous mappings of a metric continuum into itself.

f) Since every continuous mapping between the elements of M (or L) is a contraction, every monoid (or finite monoid) can be represented as a monoid of all non-constant proximally continuous or uniformly continuous or Lipschitz mappings or contractions of a metric space (or metric continuum, respectively) into itself.

Proof of Theorem 1. I. We recall that $\mathscr G$ is the category, the objects of which are all graphs G=(X,R) (i.e. X is a non-empty set, $R\subset X\times X$) and morphisms are all compatible mappings (i.e. if G=(X,R), G'=(X',R') are graphs, $f\colon G\longrightarrow G'$ is a morphism of $\mathscr G$ iff $f\colon X\longrightarrow X'$ is a mapping with $(f\times f)(R)\subset R'$). The category $\mathscr G$ is isomorphic to a full sub-category of the category $\mathscr G_C$ of all connected graphs without loops f and all their compatible mappings (see [7]). So we can prove Theorem 1 replacing $\mathscr G_C$ instead of $\mathscr G$ in it.

II. Lemma 1. Let a continuum H be a subspace of a Hausdorff space Q, α , $\ell \in H$, $\alpha \neq \ell \ell$. Let $M = H - - \{\alpha, \ell \}$ be an open subset of Q. Let Z be a continuum, $f: Z \longrightarrow Q$ be a continuous mapping. Then there exists either a component C of the set $f^{-1}(H)$ such that α , $\ell \in f(C)$ or a continuous mapping $\tilde{f}: Z \longrightarrow Q$

x) We recall that a graph G = (X, R) is said to be connected if for every $a, k \in X$ (not necessarily different) there exists x_0, \dots, x_m such that $a = x_0, k = x_m$ and either $\langle x_{i-1}, x_i \rangle \in R$ or $\langle x_i, x_{i-1} \rangle \in R$, $i = 1, \dots, m$. Every pair $\langle x, x \rangle \in R$ is said to be a loop of G.

such that $\widetilde{f}(x) = f(x)$ whenever $f(x) \in G - M$, $\widetilde{f}(x) \in fa$, b? whenever $f(x) \in M$.

<u>Proof.</u> If either $a \notin f(Z)$ or $f \notin f(Z)$, then the lemma is trivial. Let a, $f \in f(Z)$. Let there exist no component $f \in f^{-1}(K)$ with $f \in f(C)$. Put $f \in f^{-1}(A)$, $f \in f^{-1}(A)$.

- 1) We show that every component L of $f^{-1}(H)$ intersects $A \cup B$. Let L be a component of $f^{-1}(H)$ with L \cap $(A \cup B) = \emptyset$. Then there exists a closed-open subset G of $f^{-1}(H)$ such that L \subset G \subset $f^{-1}(H) (A \cup B)$. Then G is closed in Z and, since G is also an open subset of an open $f^{-1}(M)$, G is open in Z. But Z is a continuum.
- 2) Denote by \mathcal{L}_A (or \mathcal{L}_B) the system of all components of $f^{-1}(H)$ that intersect A (or B, respectively). Put $P_A = \cup \mathcal{L}_A$, $P_B = \cup \mathcal{L}_B$. 1) implies $f^{-1}(H) = P_A \cup P_B$ and $P_A \cap P_B = \emptyset$. We show that both P_A and P_B are open in $f^{-1}(H)$. If $x \in P_A$, then $x \in E$. for some component $L \in \mathcal{L}_A$. Then there exists a closed-open subset G of $f^{-1}(H)$ such that $L \subseteq G \subseteq C$ of $f^{-1}(H) = B$. Then necessarily $G \subseteq P_A$, thus P_A is open.

3) Now define

 $\tilde{f}(x) = f(x)$ whenever $f(x) \in Q - M$,

 $\widetilde{I}(x) = \alpha \quad \text{whenever} \quad x \in P_A,$

 $\mathcal{I}(x) = b$ whenever $x \in P_B$.

One can see easily that \widetilde{x} is a continuous mapping, satisfying the required conditions.

- III. Conventions. a) If M is a metric space, |M| denotes its underlying set.
- b) Let M be a bounded metric space with a metric α and a diameter d. Let R be a set, ℓ be a real number, $\ell \geq d$. Then by $\bigvee_{n \in \mathbb{R}}^{\ell} (M \times \{n\})$ we denote the metric space with the underlying set $\bigvee_{n \in \mathbb{R}} (|M| \times \{n\})$ and the metric, say \mathcal{C} , defined as follows: $\mathcal{C}(\langle x, n \rangle, \langle y, n \rangle) = \alpha(\langle x, y \rangle, \mathcal{C}(\langle x, n \rangle, \langle y, n' \rangle) = \ell$ whenever $n \neq n'$.
- c) Let $M = (|M|, \alpha)$, $M' = (|M'|, \alpha')$ be metric spaces, $\varphi: |M| \longrightarrow |M'|$ be a mapping onto |M'|. We say that M' is a metric factor space of M given by φ whenever for every x, $y \in |M'| = \alpha'(x, y) = \lim_{n \to \infty} \alpha(a_i, b_i)$, where the infimum is taken over all chains $(a_0, b_0, ..., a_m, b_m)$ such that $\varphi(a_0) = x$, $\varphi(b_m) = y$ and $\varphi(b_{i-1}) = \varphi(a_i)$, i = 1, ..., m. In fact, M' is a factor-object of M in the category of metric spaces and contractions.
- d) In [1] a space M_1 with the following properties is constructed:

M, is a metric continuum;

if Z is a sub-continuum of M_4 , $f\colon Z\longrightarrow M_4$ is a continuous mapping, then either f is constant or f(x)=x for all $x\in Z$.

The symbol M_4 is kept for this space, φ for its metric, d for its diameter in the sequel. The subspaces of M_4 are always considered as metric spaces with a restriction of φ .

e) Let H, K_1 , K_2 be three pairwise disjoint subcon-

tinua of M_4 that will be fixed in the sequel. Then the following is true for the subspace $H \cup K_4 \cup K_2$ of M_4 : (*) If $Z \subset H \cup K_4 \cup K_2$ is a continuum, $f: Z \longrightarrow H \cup K_4 \cup K_2$ is a continuous mapping, then either f is constant or f(x) = x for all $x \in Z$.

IV. To prove Theorem 1, we shall construct, for every connected graph G without loops, a metric space P_G (M, then, will be the class of all these P_G). First, using an idea from [3] a space Q_G (a subspace of the P_G described later) is constructed replacing the arrows of G by issues of H. More precisely:

Choose α , $b \in H$, $\alpha \neq b \cdot$. Let a connected graph without loops G = (X, R) be given; denote by π_4 or π_2 the first or the second projection. The metric space Q_G is defined as follows: Let

be the factor mapping defined by the following equalities: $\phi(\langle \, \mathcal{V}, \, \kappa \, \rangle) = \phi(\langle \, \mathcal{A}, \, \kappa' \, \rangle) \quad \text{whenever} \quad \kappa \,, \, \kappa' \in \mathbb{R} \,\,, \, \, \pi_2 \,(\kappa) = \\ = \pi_1 \,(\kappa') \,\,. \text{ Let } \,\, \mathcal{Q}_G \quad \text{be a metric factor space of} \, \underset{\kappa \in \mathbb{R}}{\overset{d}{\swarrow}} \, (\mathbb{H} \times \{\kappa\}) \quad \text{given by} \,\, g \,\,. \quad \text{For every} \,\, \kappa \in \mathbb{R} \,\,, \,\, \kappa \in \mathbb{H} \,\,\, \text{put} \,\, x_\kappa = \phi(\langle \, \kappa, \kappa \, \rangle) \,\,.$ The set $T = \{ \, \mathcal{A}_\kappa \,\,; \,\, \kappa \in \mathbb{R} \,\,\} \,\,\cup\,\, \{ \, \mathcal{U}_\kappa \,\,; \,\, \kappa \in \mathbb{R} \,\,\} \,\,\, \text{is a closed discrete subset of} \,\,\, \mathcal{Q}_G \,\,\,.$

Lemma 2. Let either Z = H or $Z = K_1$ or $Z = K_2$, $f: Z \longrightarrow G_G$ be a continuous mapping. Then either f is constant or Z = H and there exists $\kappa \in R$ such that $f(x) = x_n$ for every $x \in Z$.

Proof. Put $H_n = g(H \times \{n\})$. If $t \in T$ put $A_t = \bigcup_{i \in H_n} H_i$, $St_i = (A_i - T) \cup \{t\}$, $D_i = A_i \cap T$. Put $S = T \cap f(Z)$.

- 1) If $S = \emptyset$, then, since f(Z) is connected and (*) holds, f is constant.
- 2) Let card S=1, say $S=\{s\}$. Since f(Z) is connected, then $f(Z) \subset St_b$, i.e. $f=i \circ f'$ where $i: St_b \longrightarrow A_G$ is the inclusion. We prove that f is a constant to s. If there exists $y \in St_b \{s\}$, $y \in f(Z)$, define the mapping $g: St_b \longrightarrow St_b$ such that g(x) = x whenever $x \in H_{n_0} T$ where n_0 is the element of R with $y \in H_{n_0}$, g(x) = b otherwise.
- g is continuous and (*) implies that $g \circ f'$ is constant, which is a contradiction.
- 3) Let card S > 1. One can see easily that the mapping $q: Z \longrightarrow Q_G$ such that
- q(x) = f(x) whenever $f(x) \in H_n$ with a_n , $b_n \in f(Z)$,
 - $g(x) = a_n$ whenever $f(x) \in H_n$, $k_n \notin f(Z)$,

 $g(x) = k_n$ whenever $f(x) \in H_n$, $a_n \notin f(Z)$

is continuous. Since Ξ is compact, the set $S=f(\Xi)\cap \Gamma$ of $T=q_1(\Xi)\cap T$ is finite. Let $L=\{l_1,\ldots,l_m\}$ be the set of all triples $l_i=\langle s_i\,,\,s_i'\,,\,H_{\kappa_i}\rangle$ such that $s_i\,,\,s_i'\in S\,,\,s_i+s_i'\,,\,\kappa_i'\in R\,,\,s_i\,,\,s_i'\in H_{\kappa_i}$, and there exists no component C of the set $q^{-1}(H_{\kappa_i})$ with $s_i\,,\,s_i'\in f(C)$. Now we use Lemma 1 n-times,

we put $q_0 = q$, $q_{i+1} = \tilde{q}_i$. The continuous mapping $q_m : \mathbb{Z} \longrightarrow \mathbb{Q}_G$ has the following property:

If for some $\kappa \in \mathbb{R}$ the set $g_m(\Xi) \cap H_\kappa$ is non-empty, then either

- a) $g_n(Z) \cap H_n \subset \{a_n, k_n\}$ or
- b) there exists a component C of $q_m^{-1}(H_n)$ such that a_n , $b_n \in q_m(C)$. Since $q_m(Z)$ is connected, then necessarily there exists $n_0 \in \mathbb{R}$ such that b) holds for it. Then (*) implies Z = H and $q_m(x) = *_{n_0}$ for all $x \in C$. Particularly, $q_m(a) = a_{n_0}$, $q_m(b) = b_{n_0}$, i.e. a, $b \in C$. Consequently, there exists exactly one such

 κ_o . Since q_m (Z) is connected, q_m (Z) \subset H_{κ_o} . Then (*) implies q_m (x) = κ_{κ_o} for all κ \in Z = H. Then, clearly, $q_m = q_{m-1} = \ldots = q_0 = q = f$.

V. Let H, K_1 , K_2 , a, b have the same meaning as in IV. Moreover, choose c_1 , $c_2 \in H$ such that card $\{a, b, c_1, c_2\} = 4$ and choose n_i , $d_i \in K_i$, i = 1, 2, $n_i \neq d_i$. The metric space P_G is defined as follows: Let

 $\psi: \bigcup_{\kappa \in \mathbb{R}} (|H \cup K_1 \cup K_2| \times f \kappa^{\frac{1}{2}} \longrightarrow |P_G|)$ be the factor mapping defined by the following equalities: $\psi(\langle \ell, \kappa \rangle) = \psi(\langle \alpha, \kappa' \rangle) \text{ whenever } \kappa, \kappa' \in \mathbb{R}, \ \pi_2(\kappa) = \pi_4(\kappa');$ $\psi(\langle \alpha, \kappa \rangle) = \psi(\langle \alpha, \kappa' \rangle) \text{ whenever } \kappa \in \mathbb{R}, \ i = 4, 2;$

 $\psi(\langle d_i, \kappa \rangle) = \psi(\langle c_i, \kappa \rangle) \quad \text{whenever} \quad \kappa \in \mathbb{R} \,, \, i = 1, 2 \,;$ $\psi(\langle n_1, \kappa \rangle) = \psi(\langle n_2, \kappa' \rangle) \quad \text{whenever} \quad \kappa, \, \kappa' \in \mathbb{R} \,.$

The space P_G is the metric factor space of $\bigvee_{\kappa \in \mathbb{R}}^{d} ((H \cup K_1 \cup K_2) \times \{\kappa\})$ given by ψ . The space G_G is a subspace of P_G and ψ is an extension of φ . Put $H_{\kappa} = \psi (H \times \{\kappa\})$, $K_{i\kappa} = \psi (K_i \times \{\kappa\})$, $\psi_{\kappa} = \psi (\langle \psi, \kappa \rangle)$. The point $n_{1\kappa} = n_{2\kappa}$ will be also denoted by n_G . Put $T_G = \{a_{\kappa}; \kappa \in \mathbb{R}\} \cup \{\ell_{\kappa}; \kappa \in \mathbb{R}\}$, $D_{i^{-}} = \{d_{i\kappa}; \kappa \in \mathbb{R}\}, \ i = 1, 2$. Clearly, $T_G \cup D_1 \cup D_2$ is a closed discrete subset of P_G and there is a bijection

$$\lambda_{G}: X \longrightarrow T_{G}$$

onto T_G such that for every $x \in X$ either $\Lambda_G(x) = a_n$ where $\pi_1(n) = x$, or $\Lambda_G(x) = b_n$ where $\pi_2(n) = x$.

Lemma 3. Let either Z = H or $Z = K_1$ or $Z = K_2$. Let $f: Z \longrightarrow P_G$ be a continuous mapping. Then either f is constant or there exists $\kappa \in R$ such that $f(x) = x_{\kappa}$ for all $x \in Z$.

<u>Proof.</u> 1) Let $p_G \notin f(Z)$. Then use the retraction $q: P_G - \{p_G\} \longrightarrow Q_G$ with $g(K_{in} - \{p_G\}) = \{d_{in}\}$, Lemma 2 and (*).

2) Let $\mu_G \in f(\mathbb{Z})$. If $f(\mathbb{Z}) \cap (\mathbb{D}_1 \cup \mathbb{D}_2) = \emptyset$, then f is constant. (It may be proved analogously to 2) in the proof of Lemma 2.) Let $S = f(\mathbb{Z}) \cap (\mathbb{D}_1 \cup \mathbb{D}_2) \neq \emptyset$. Define $g: \mathbb{Z} \longrightarrow \mathbb{P}_G$ as follows: g(x) = f(x) whenever $f(x) \in \mathbb{Q}_G$ or $(f(x) \in \mathbb{K}_{in}) \& (d_{in} \in f(\mathbb{Z}))$, $g(x) = \mu_G$ otherwise.

Then q is continuous, $q(Z) \cap (D_1 \cup D_2)$ is finite. Let $L_i = ft_1^i, \ldots, t_{n_i}^i$ be the set of all points of $g(Z) \cap D_i$ such that for no component C of $g^{-1}(K_{in})$ is n_G , $d_{in} \in f(C)$ (i=1,2). We use Lemma 1 (n_1+n_2) -times and we obtain a continuous mapping $n:Z \longrightarrow P_G$ with the following property: if $n \in \mathbb{R}$, $n \in \{1,2\}$, then

- a) either h (Z) n Kin cin, din ? or
- b) there exists a component C of the set $h^{-1}(K_{in})$ such that h_G , $d_{in} \in h(C)$. One can see easily (analogously to the proof of Lemma 2) that the case b) is true precisely for one couple $\langle n_0, i_0 \rangle \in \mathbb{R} \times \{1, 2\}$. Define a mapping $l: \mathbb{Z} \longrightarrow K_{i_0n_0}$ such that l(x) = h(x) whenever $h(x) \in K_{i_0n_0}$, $l(x) = d_{i_0n_0}$ otherwise. Since l is continuous non-constant, then necessarily $\mathbb{Z} = K_{i_0}$ and $l(x) = x_{n_0}$ for all $x \in \mathbb{Z}$. But then l = h = q = f.

VI. Let G=(X,R), G'=(X',R') be connected graphs without loops, $f:G\longrightarrow G'$ be a compatible mapping. Define a mapping $\overline{f}:P_G\longrightarrow P_G$ as follows: if $\kappa=\langle\kappa_1,\kappa_2\rangle\in R$, $\kappa\in H\cup K_1\cup K_2$, put $\overline{f}(\kappa_n)=\kappa_n$, where $\kappa'=\langle f(\kappa_1),f(\kappa_2)\rangle\in R'$. It is easy to see that every \overline{f} is a non-constant contraction. Conversely, let $g:P_G\longrightarrow P_G$, be a continuous mapping. We want to prove that either g is constant or $g=\overline{f}$ for some compatible mapping $f:G\longrightarrow G'$.

1) First we prove: If there exists $\kappa \in \mathbb{R}$ such that the restriction $\frac{9}{H_n}$ or $\frac{9}{K_{4\kappa}}$ or $\frac{9}{K_{2\kappa}}$ is constant, then $\frac{9}{K_{2\kappa}}$ is constant. But it follows easily from

Lemma 3 and the fact that G is connected. (To prove it denote by s the value of ${}^{9}/H_{n}$ (or ${}^{9}/K_{4n}$ or ${}^{9}/K_{2n}$ respectively) and discuss the cases s = n, $s \in \mathcal{Q}_{G}$, $s \in \mathcal{P}_{G} - \{\mathcal{Q}_{G} \cup n\}$.)

2) If g is not constant, then for every $\kappa \in \mathbb{R}$ there exists $\kappa' \in \mathbb{R}'$ such that $g(x) = \kappa_{\kappa}$, for all $\kappa \in \mathbb{R}$. Then necessarily $g(T_G) \subset T_{G'}$. If we put $f = \Lambda_G^{-1} \circ g \circ \Lambda_G$ then $f: G \longrightarrow G'$ is a compatible mapping and g = F.

VII. Now it is evident that the class M of all the spaces P_G , where G runs over all connected graphs without loops, has the required properties.

<u>Proof of Theorem 3</u> is, in fact, the same as the proof of Theorem 1. It is only necessary to notice that the category \mathcal{O}_{f} of all finite graphs is isomorphic to a full subcategory of the category \mathcal{O}_{fc} of all finite connected graphs without loops (proved implicitly in [7]). If G is a finite connected graph without loops, then clearly the space P_G is a metric continuum.

Proof of Theorem 2.

I. Lemma 4. Let M be a real compact metric space, $x\in\beta M-M \ . \quad \text{Let } x_m\in\beta M \ , \ x=\lim_{n\to\infty}x_m \ .$ Then there exists a natural number m , such that $x_m=x$ for all $m\geq m_o$.

Proof. It follows immediately from Theorem 9.11 in [2].

II. Lemma 5. Let M, M' be metric spaces, M connected, M' realcompact. Let $q:\beta M\longrightarrow\beta M'$ be a continuous mapping. Then either q is constant or $q(M)\subset M'$.

Proof. Let $g(x) \in \beta M' - M'$ for some $x \in M$. Put $A = M \cap g^{-1}(g(x))$. A is a closed subset of M and Lemma 4 implies that A is open. So A = M, g is constant.

III. If there is no measurable cardinal, then every metric space is realcompact. Then it is easy to see that the class $K = \{\beta M, M \in M\}$ has all the required properties.

References

- [1] H. COOK: Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund.Math. 60(1966),241-249.
- [2] L. GILLMAN, M. JERISON: Rings of continuous functions, Van Nostrand's University series in higher mathematics.
- [3] J. de GROOT: Groups represented by homeomorphism groups I, Math.Annelen 138(1959),80-102.
- [4] Z. HEDRLÍN: Non-constant continuous transformations form any semigroup with unity, Nieuw Archief voor Wiskunde (3),XIV,230-236(1966).
- [5] Z. KEDRLÍN: Extensions of structures and full embeddings of categories, Actes, Congrès intern.math., 1970, Tome 1,319-322.
- [6] Z. HEDRLÍN, A. PULTR: On full embeddings of categories of algebras, Illinois J.of Math.10(1986),392-405.

- [7] Z. HEDRLÍN, J. LAMBEK: How comprehensive is the category of semigroups, J. of Algebra 11(1969), 195-212.
- [8] Z. HEDRLÍN, A. PULTR: O predstavlenii malych kategorij, DAN SSSR 160,284-286(1965).
- [9] Z. HEDRLÍN, P. VOPËNKA: An undecidable theorem concerning full embeddings into categories of algebras, Comment.Math.Univ.Carolinae 7(1966), 401-409.
- [10] A. PULTR: Concerning universal categories, Comment.

 Math.Univ.Carolinae 5(1964),227-239.

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83 Praha 8 Československo

(Oblatum 27.3.1972)

