

Werk

Label: Article **Jahr:** 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0013|log27

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae

13,2 (1972)

A NOTE ON THE RIEMANN CURVATURE TENSOR Oldřich KOWALSKI, Praha

In Paper [2] the problem was discussed whether, and how, a Riemann metric can be derived from a "generalized" curvature tensor, under a natural assumption of regularity. The purpose of this Note is to extend our results to a wider class of curvature tensors.

We shall start with some preparatory lemmas.

Lemma 1. Let V be a real vector space with a positive scalar product g. Let $G \subset O(V)$ be a connected Lie group of orthogonal transformations of V and $g \subset \sigma(V)$ its Lie algebra. Then for any symmetric bilinear form h on V the following is true:

In is invariant with respect to G if and only if for any A ϵ ψ and X, Y ϵ V

(1)
$$h(AX,Y) + h(X,AY) = 0.$$

Proof. See [1], Chapter I.

Lemma 2. (See [11, Appendix 5.) Let G be a subgroup of O(m) which acts irreducibly on the m-dimensional coordinate space \mathbb{R}^m . Then any symmetric bilinear form

AMS, Primary: 53B20 Ref. Z. 3.933.311

Rei. 2. 3.933.31

on \mathbf{R}^{m} which is invariant by \mathbf{G} is a multiple of the standard scalar product

$$(x, y) = \sum_{i=1}^{n} x^{i} y^{i}$$

Let ${\boldsymbol{\mathscr U}}$ be a set of linear endomorphisms of a vector space ${\boldsymbol{\mathcal V}}$. Put

(2)
$$\Theta(\mathcal{L}) = \{ h \in S^2(Y) \mid h(AX,Y) + h(X,AY) = 0, X,Y \in V, A \in \mathcal{L} \}$$

where \mathcal{S}^2 (γ) denotes the space of all symmetric bilinear forms on γ .

We say that \mathscr{L} generates a Lie algebra \mathscr{A} $\subset \mathscr{AL}(V)$ if \mathscr{A} is the least Lie subalgebra of $\mathscr{AL}(V)$ containing \mathscr{L} . Finally, $G(\mathscr{L})$ will denote the connected subgroup of GL(V) whose Lie algebra is generated by \mathscr{L} .

<u>Proposition 1.</u> Let V be a vector space with a (positive) scalar product g and $G \subset O(V)$ an irreducible Lie group of orthogonal transformations of V. Let $\mathscr{L} \subset \mathscr{N}(V)$ be a set of linear endomorphisms generating the Lie algebra of G. Then

- (i) dim $\Theta(\mathcal{L}) = 1$, i.e., $\Theta(\mathcal{L}) = (q)$.
- (ii) If $X \in V$ and AX = 0 for any $A \in \mathcal{L}$, then X = 0.

<u>Proof.</u> ad (i). If $\mathscr{L} = \mathscr{U}$, the assertion is nothing else than an infinitesimal version of Lemma 2 (cf. Lemma 1). In a general case we have $\Theta(\mathscr{U}) \subset \Theta(\mathscr{L})$. Put $\mathscr{L}' = \{A \in \mathscr{U} \mid \Theta(\mathscr{L}) \subset \Theta(\{A\})\}$. Because $\Theta(L') = \bigcap \Theta(\{A\})$ (Ac \mathscr{L}), we get $\Theta(\mathscr{L}') = \bigcap (\mathscr{L})$.

It suffices to show that $\mathscr{L}' = \mathscr{U}$. Clearly, if

A. B $\in \mathcal{L}$, then $\infty A + \beta B \in \mathcal{L}'$. Now, for any $X \in V$, $h \in \Theta(\mathcal{L})$, $A, B \in \mathcal{L}$, h([A,B]X,X) = h(ABX,X) - h(BAX,X) = -h(BX,AX) + h(AX,BX) = 0, and hence $[A,B] \in \mathcal{L}'$.

ad (ii). Let first $\mathcal{L} = \mathcal{H}$. Then if a non-zero $X \in V$ exists with AX = 0 for any $A \in \mathcal{H}$, the corresponding group G pointwise preserves the vector subspace $(X) \subset V$ and hence G is not irreducible - a contradiction.

Now, let $\mathscr{L} \subset \mathscr{U}$ be general, and let $X \in V$ be such that AX = 0 for any $A \in \mathscr{L}$. Then the same is true for any $B \in \mathscr{U}$. This completes the proof.

Let **B** be a tensor of type (1,3) on a vector space V, i.e., a bilinear map of $V \times V$ into spl(V). Then $\mathcal{B} = \{B(X,Y) \mid X,Y \in V\}$ is a subset of spl(V) and we shall put

$$G(B) \stackrel{\text{def}}{=} G(B), \Theta(B) \stackrel{\text{def}}{=} \Theta(B)$$
.

Following [2], a linear map $B: V \wedge V \longrightarrow \mathfrak{PL}(V)$ is called <u>regular</u> if the endomorphism $B(X \wedge Y)$ is non-trivial for any $X \wedge Y \neq 0$. (We can write also B(X,Y) instead of $B(X \wedge Y)$ as B corresponds to a unique antisymmetric bilinear map of $V \times V$ into $\mathfrak{PL}(V)$.)

Further, suppose that a scalar product g on Y exists satisfying g(B(U,T)Y,X) = -g(B(U,T)X,Y), g(B(U,T)X,Y) = g(B(X,Y)U,T), for any $U,T,X,Y \in Y$. Then B is called a curvature structure with respect to g. Now, we have

<u>Proposition 2.</u> Let V be a vector space provided with a scalar product q and let $B: V \wedge V \longrightarrow \mathfrak{pl}(V)$ be a regular curvature structure with respect to q. Then the group G(B) is an irreducible subgroup of O(V).

<u>Proof.</u> The inclusion $G(B) \subset O(V)$ is obvious because $\mathcal{B} \subset \mathscr{N}(V)$. We show that G(B) is irreducible. According to [2], Lemma 1, for any two vectors $X \perp Y$ of Y there are transformations $\mathcal{B}(\mathcal{U}_i \wedge T_i)$

 $(u_i, T_i \in V, i = 1, ..., k)$ such that $\sum_{i=1}^k B(u_i \wedge T_i) X = Y$.

If the group G(B) were reducible, the corresponding Lie algebra generated by $\{B(U \land T) | U, T \in V\}$ would possess a proper invariant subspace $V' \subset V$, a contradiction.

Let (M,q) be a Riemann manifold of class C^{∞} having the curvature tensor R. Following C. Teleman [4], the space (M,q) is called <u>non-divisible</u> if, at each point $x \in M$, the group $G(R_X)$ is irreducible. It is obvious that each non-divisible Riemann manifold is irreducible (see [1], Ch.III., IV.).

More generally, we shall call a <u>tensor field B of type</u> (1,3) on (M,q) non-divisible if the group $G(B_x)$ is irreducible for each $x \in M$.

Further, the tensor field B is called a curvature structure with respect to g (or on (M,g)) if so is each algebraic tensor B_{χ} ($\chi \in M$). For example, the Riemann curvature tensor R of (M,g) and the corresponding Weyl tensor of conformal curvature C are curvature structures

on (M, q).

According to Proposition 2, any regular curvature structure on (M, q) is non-divisible. (Here "regular" means "regular at each point x & M ".)

One can re-write Proposition 1 as follows:

<u>Proposition 3.</u> Let (M,q) be a Riemann space (of class C^{∞}) and B a non-divisible curvature structure on (M,q). Then

- (i) $\dim (B_x) = 1$ for each $x \in M$, i.e., $\Theta(B) = \Theta(B_x)(x \in M)$ is a line bundle; and g is a section of $\Theta(B)$
- (ii) If B(X,Y)Z = 0 for any vector fields X, Y on M then Z is a null field.

Now, we can see easily that Theorem 2 and all the paragraphs 3 - 7 of [2] remain true if we replace the word "regular" by the word "non-divisible" everywhere. Particularly, we get the following theorems (the reader is referred to the original paper [2] for details).

Theorem 1. (C. Teleman, [4].) Let (M, g) be a connected non-divisible Riemann space of dimension $m \geq 3$, and let Φ be a curvature tensor-preserving diffeomorphism of (M, g) onto a Riemann space (M', g'). Then Φ is a homothety.

Corollary. (See K. Nomizu and K. Yano,[3].) Let (M,q) be a connected, analytic, irreducible, locally symmetric Riemann space of dimension $m \ge 3$ and let Φ be a curvature tensor-preserving diffeomorphism of (M,q)

onto a Riemann space (M', q'). Then Φ is a homothety.

<u>Proof</u> of the corollary: one can see easily that, for any point $x \in M$, $G(R_x)$ is the restricted homogeneous holonomy group of (M,q) at x. Thus (M,q) is non-divisible.

Theorem 2. (Cf.[2], paragraph 5 for details.) Let B be a non-divisible tensor field of type (1,3) on a C^{∞} -manifold M, dim $M \geq 3$. Then one can decide whether or not B is locally a Riemann curvature tensor only by algebraic operations and differentiations.

Theorem 3. Let M be a C^{∞} -manifold, dim $M \geq 3$. A local reconstruction of a non-divisible Riemannian metric q on M from its curvature tensor R requires only algebraic operations, differentiations and the integration of an exact differential.

References

- [1] S. KOBAYASHI, K. NOMIZU: Foundations of Differential Geometry, Vol. I., Intersc. Publ., New York-London, 1963.
- [2] O. KOWALSKI: On regular curvature structures, to appear in Math.Zeitschr.
- [3] K. NOMIZU, K. YANO: Some Results Related to the Equivalence Problem in Riemannian Geometry, Math. Zeitschr.97(1967),29-37.
- [4] C. TELEMAN: On a theorem by Borel-Lichnerowicz (Russian), Rev.Roumaine Math.Pures Appl. 3(1958), 107-115.

Matematický ústav Karlova Universita Malostranské nám.25 Praha-Malá Strana Československo

(Oblatum 8.12.1971)

