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A NOTE ON THE RIEMANN CURVATURE TENSOR
0ldfich KOWALSKI, Praha

In Paper [2] the problem was discussed whether, and
how, a Riemann metric can be derived from a "generalized"
curvature tensor, under a natural assumption of regularity.
The purpose of this Note is to extend our results to a wi-

der class of curvature tensors.

We shall start with some preparatory lemmas.

Lemmg 1. Iet V be a real vector space with a positi-
ve scalar product g . Let G c 0(V) be a connected Lie
group of orthogonal transformetions of V and 4 ¢ - (V)
its Lie algebra. Then for any symmetric bilinear form A
on ¥ the following is true:

A  is invariant with respect to G if and only if
forany A e g eanmd X, YeV

(1) h(AX,Y) + A(X,AY) =0 .

Proof. See [1], Chapter I.
Lemmg 2. (See [11, Appendix 5.) Let G be a subgroup
of 0(m) which acts irreducibly on the m -dimensional

coordinate space R”™ . Then any symmetrie bilinear form
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on R™ which is inveriant by G 4is a multiple of the

standard scalar product
(x ) = £ xCo
' ¥ PAY] v
Let & 1be a set of linear endomorphisms of a vector

space V , Put

(2) O(L) = {h e SUV) | W (AX,Y)+h(X,AY) = 0;X,YeV, Ae L}

where 82 (Y) denotes the space of all symmetric bili-
near forms on V ,

We say that & generates a Lie algebra 4 < g‘l(V)

if 45 1s the least Lie subalgebra of 42 (V) containing
;C_ ., Finally, G(&) will denote the connected subgroup
of GL(Y) whose Lie algebra is generated by & .

Propogition 1. Let ¥V be a vector space with a (posi-
tive) scalar product @ and G & O(V) an irredueible Lie
group of orthogonal transformations of V , Let & c « (V)
be a set of linear endomorphisms generating the Lie algebra

4 of G , Then
(1) dim (&) = 4, i.e., O(&) = (g) .

(1) If X6V and AX =0 forany Ae & , then X=0.

Proof. ad (1). If & = 4 , the assertion is nothing
else than an infinitesimal version of Lemma 2 (¢f. Lemma 1).
In a general case we have O(g) c 6(&€) . Put &' =
= {Acy |OEL)cO{A})} , Because B(L') = NO{AD)
(Acd), we get O(L) 2 O6(L) .

It suffices to show that &/ = 4 . Clearly, if
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A.Be & , then «A+ 3B €& . Now, for any XeV,
heOCEL), A,BeL, m(LA,BIX X) = h(ABX,X) -

- A (BAX,X)= -h(BX,AX) + M (AX,BX) = 0 , and hence
[A,Ble &’ .

ad (i1). Let first & = 4 . Then if a non-zero X €
eV exists with AX = 0 for any A € 4 , the correspon-
ding group G pointwise preserves the vector subspace (X)e
cY and hence G is not irreducible - a contradiction.

Now, let ¥ « 4 be general, and let X & V  be such
that AX =0 for any A € & . Then the same is true for any
B € 4 . This completes the proof.

Let B be a tensor of type (1,3) on a vector space
V, i.e., a bilinear map of V x ¥  into 4£ (V) . Then
R =4BX,NNIX,YeV? is a subset of g4 (V)
and we shall put

G(B) == 6(B), 6(B) 2L a(m)

Following [2], a linear map B: VAV — 4L (V)
is called pegular if the endomorphism B(X A Y) is non-
trivial for any X AY & 0 . (We can write also B(X,Y)
instead of B(X AY) as B corresponds to a unique anti-
symmetric bilinear map of ¥V x ¥V  into 42 (V) .)

Further, suppose that a scalar product g on Y exists
satisfying g (B(U,T)Y,X) = —g(B(U,TIX,Y) ,
¢ (B(U,T)X,Y) = g(B(X,Y)U,T), for eny U, T,X,Y eV .
Then B is called a curvature structure wit t to g .

Now, we have
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Proposition 2. Let ¥V be a vector space provided with
a scalar product ¢ and let B: VAV — 4L (V) bea
regular curvature structure with respect to g . Then the
group G (3B) is an irreducible subgroup of O(YV) .

Proof. The inclusion G(B) < 0(Y) is obvious be-
cause B c (V) . We show that G (B) is irreducib-
le. According to [2], Lemma 1, for any two vectors X L Y
of ¥ there are transformations Bcu, A T‘.')

o
(U, T;6V,4=4,..., %) such that S BIUATIX= Y.

If the group G (B) were reducible, the corresponding Lie
algebra generated by {B(UWAT)IU,Te ¥V} would pos-

sess a proper invariant subspace V' e Y P contradiction.

Let (M,g ) be a Riemann manifold of class C® ha-
ving the curvature tensor R ., Following C. Teleman [4],
the space (M, g ) 1s called non-divisible if, at each
point x € M , the group G'(]ix) is irreducible. It is
obvious that each non-divisible Riemann manifold is irredu-
cible (see [1], Ch.III.,IV.).

More generally, we shall call a tensor field B of ty—
pe (1,3) on (M,g) non-divisible if the group G(B,)
is irreducible for each x e M .

Further, the tensor field B is called a_curvature
structure with respect to ¢ (or on (M, @) ) if so is each
glgebraic tensor B’ (x e M) . For example, the Riemann
curvature tensor R of (M, 9) and the corresponding Weyl

tensor of conformal curvature C are curvature structures

- 260 -



on (M,q).

According to Froposition 2, any regular curvature strue-
ture on (M, q) is non-divisible. (Here "regular" means
"regular at each point x e M ".)

One can re-write Proposition 1 as follows:

Proposition 3. Let (M, g ) be a Riemann space (of
class C® ) and B a non-divisible curvature structure

on (M,g). Then

(1) M(‘BX) =1 for each .x e M , i.e., O(B) =
=Ue(3‘x)(¥ €M) is a line bundle; and g 1s a section
of 8(B)

(i1) If B(X,Y)Z = 0 for any vector fields X,Y on
M then Z is a null field.

Now, we can see easily that Theorem 2 and all the parag-
graphs 3 = 7 of [2] remain true if we replace the word "regu-
lar" by the word "non-divisible" everywhere. Particularly, we

get the following theorems (the reader is referred to the ori-
ginal paper [2] for details).

Theorem 1. (C. Teleman,[4].) Let (M, g ) be a connec-
ted non-divisible Riemann space of dimension m 2 3 , and
let Q be a curvature tensor-preserving diffeomorphism of
(M, @) onto a Riemann space CM', 9') . Then ¢ 1is a
homothety.

Corollary. (See K. Nomizu and K. Yano,[3].) Let
(M, @) be a connected, analytic, irreducible, locally sym-
metric Riemann space of dimension m 2 3 and let $ be

a curvature tensor-preserving diffeomorphis:h of (M, 9,)
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onto a Riemann space (M’, ¢’) . Then $ is a homothe-
ty.

Proof of the corollary: one can see easily that, for
eny point xe M , G (,‘R“) is the restricted homogene-
ous holonomy group of (M, ¢ ) at x , Thus (M,qg)
is non-divisible.

Theorem 2. (Cf.[2], paragraph 5 for details.) Let B
be a non-divisible tensor field of type (1, 3) on a
C® -manifold M ,dim M 2 3. Then one can decide whether
or not B is loceally a Riemann curvature tensor only by al-
gebraic operations and differentiations.

Theorem 3. Let M be a C® -manifold, dim M = 3 .
A local reconstruction of a non-divisible Riemannian metrie
g on M from its curvature tensor R requires only al-
gebraic operations, differentiations and the integration of

an exact differential.
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