

Werk

Label: Article **Jahr:** 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0013|log26

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 13,2 (1972)

PLANAR PERMUTATION GRAPHS OF PATHS Ladislav NEBESKÝ, Praha

The present note gives the solution of the first of three problems stated in Chartrand and Frechen [2]; formerly, this problem appears in an implicite form in Chartrand and Harary [1]. (This problem has a certain relation to the question concerning mathematical linguistics discussed in [3].)

Let $m \geq 1$. Consider a path A_m with the set of vertices $R = \{\kappa_1, \ldots, \kappa_{m+1}\}$ and the set of edges $E_R = \{\kappa_1, \kappa_2, \ldots, \kappa_m, \kappa_{m+1}\}$. By B_m we shall denote a disjoint copy of the path A_m such that B_m has the set of vertices $S = \{\kappa_1, \ldots, \kappa_{m+1}\}$ and the set of edges $E_S = \{\kappa_1, \kappa_2, \ldots, \kappa_m, \kappa_{m+1}\}$. Let ∞ be a permutation on the set $\{1, \ldots, m+1\}$. By $P_{\alpha}(A_m)$ we denote the graph with the set of vertices $R \cup S$ and the set of edges $E_R \cup E_S \cup \{\kappa_1, \kappa_{\alpha(1)}, \ldots, \kappa_{m+1}, \kappa_{\alpha(m+1)}\}$. The graph $P_{\alpha}(A_m)$ is a special case of permutation graphs which were studied in [1] and [2].

Integers will be denoted by e, f, q, h, i, j and k. We shall write med(f, q, h) if either f < q < h

AMS, Primary: 05C99

Ref. Z. 8.83

or n < q < f.

Theorem. A necessary and sufficient condition for $P_{\infty}(A_m)$ to be planar, is that for any i, j, k such that 1 < i < j < k < m+1, at most one of the following two statements hold:

(1)
$$med(\alpha(i), \alpha(j), \alpha(i-1))$$
,

(2)
$$med(\alpha(k), \alpha(j), \alpha(k+1))$$
.

Proof. Necessity: Assume that $P_{\infty}(A_m)$ is planar and that there exist i, j, k such that $1 < i < j < k \le m$ and both (1) and (2) hold. Let e, f, g, k be such that $\{e, i, g, h\} = \{i, i-1, k, k+1\}$ and $\alpha(e) < \alpha(f) < \alpha(g) < \alpha(g) < \alpha(h)$. By G we denote the subgraph of $P_{\infty}(A_m)$ consisting of the path between h_{i-1} and h_{m+1} in A_m , the path between $h_{\infty(e)}$ and $h_{\infty(h)}$ in h_m , and the edges $h_{\infty(e)}$, $h_{\infty(e)}$, h

Sufficiency: Consider a cartesian plane. For every j, $1 \le j \le m+1$, we define the points $v_j = (j, \infty(j))$, $w_j = (0, j)$ and $z_j = (m+2, j)$. We shall say that a point v_j is of the first or the second kind if there exist m, $1 \le m \le m$, such that the intervals $v_j \approx_{\alpha(j)}$ and v_{m+1} or the intervals $v_j \approx_{\alpha(j)}$ and v_{m+1} , respectively, cross. It is readily seen that no point v_j is simultaneously of the first and of the second kind. We

shall say that a point v; is of the third kind if it is neither of the first nor of the second kind. The graph P_{∞} (A_{∞}) can be embedded in the plane as follows: every vertex K is drawn as the point ve; every vertex be is drawn as the point we; every edge ke kers as the interval vg vg+1; every edge bu but as the interval wh whit; every edge hibact, as the interval vi wacce, , when vi is of the first or the third kind and as a suitable arc passing through the point $z_{\alpha(i)}$, when v_i is of the second kind. Obviously, there are arcs C_{i} connecting w_{i} with z_{i} such that no two of them intersect and that C_{2} meets the oblong $\langle 0, \ldots, m+2 \rangle \times \langle 1, \ldots, m+1 \rangle$ only in w_i and x_i . Thus, it suffices to extend the intervals $v_i \approx_{\alpha(i)}$ v_i of the second kind by $C_{\infty(A)}$.

Acknowledgment. I would like to express my thanks to A. Fultr for his advice which improved the formulations in this paper.

References

- [1] G. CHARTRAND and F. HARARY: Planar permutation graphs, Ann.Inst.H.Poincaré,Sect.B3(1967),433-438.
- [2] G. CHARTRAND and J.B. FRECHEN: On the chromatic number of permutation graphs, in: Proof Techniques in Graph Theory(Ed.F.Harary), Academic Press, New York and London 1969, pp.21-24.
- [3] L. NEBESKÝ: A planar test of linguistic projectivity (to appear in Kybernetika).

Filosofická fakulta Karlova universita nám.Krasnoarmějců 2 Praha 1 Československo

(Oblatum 17.11.1971)