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ON EXISTENCE OF THE WEAK SOLUTION FOR NON-LINEAR PARTIAL
DIFFERENTIAL EQUATIONS OF ELLIPTIC TYPE, II.
J. KABUR, Bratislava

This paper is a direct continuation of my paper [1]
concerning the existence of a weak solution of boundary va=—
lue problems for non-linear elliptiec equations of the form

l‘ZM("’)mDLa.i (x,D%w) = £

in Orlicz-Sobolev spaces. Therefore, to follows this paper,
we have to make use of [1]. The used notation is in accor-
dance with [1] and the numbering of paragraphs, theorems and
relations is being continued as well. The used fundamental
notions are defined in [1l). The main aim of our paper is to
prove the fact that it is sufficient to assume the algebraic
condition (2.16), i.e.,

4§M §ia,(x,§;) = ¢, ,?;M §:9.(§.) - ¢
to guarantee the coercivity (2.7), i.e.,

bm ﬂuﬂv;;,: . I;m D“ua,;(x,])’.(aﬁu))dx = o0 ,

-
ﬂwllw @

~
where w, e WG’ .

In the paper [1] we proved (2.7) assuming (2.16) and the
rather limited assumption (1.9) which ineludes the following

AMS, Primary: 35J60 Ref. Z. 7.956
Secondary: 47H15, 46E30

- 211 -



condition:

For all £ e M there exist x, > 4, wy > 4 with
0<lb1.‘-/a1-'<'1 so that

Cos le""' € ug, (w) £c,, lae |
for all lw !l 2w, > 0 ,where ¢ ., 6 ¢, . u; are the
suitable constants.

In many cases, the condition (2.16) can yet be weakened.
In this connection a theorem about the equivalence of norms
is proved (Theorem 10), which itself is also interesting. As
8 consequence of these results we obtain existence theorems
for the weak solution with hypotheses that can be easily ve-
rified in concrete problems.

In the next remark we call the attention to the fact that

the class M by means of which the non-linear members are

3
described is essentially larger than the set of polynomials

PP

Bemark. If g (w) e mg , then Assertion 1, § 1 gua-
rantees the existence of 5o > 1, @ > {1 such that (1.1),

i.e. .

c1lul4’eu9«(w)£ czlul* for all lul = ¢

holds, where ¢ , ¢, , ¢C are the suitable constants.
On the contrary, for all f, @ with g > 2 > 1 ,there
exists g, o Cu) e ‘m, such that (1.1) holds, while
the relation (1.1) does not take place for any 41.', Q’ with
p<p <g <q . -

We shall denote positive constants by ¢ with or with-
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out subscripts and the dependence of ¢ on the parameter
£ will be denoted by ¢ Ce) .,

§ 5.
Let 4, (x) be a function in W;: Q). (uy(x)
represents the stable boundary values - see p. 153.)
Our main result is

Theorem 7. If the conditions (2.2) and (2.16) are ful-
filled, then (2.7) holds.

Proof. From (2.16) we obtain
-{n. EMD‘.’u.a,_;(.x,Défu,-o- aldx =
= [ f_cnl)“"(wo+u)aq (x,D¥u,+ N x -
L EyDioay (D% uyru)) dx =
(5.1) 2c E, J‘;D"(u,-rw)q,,-, (D“(u,-ra.))d..x-
-f P D"'Aooa.,‘-_(x,l’"‘(uo-o-u)) dx -
—cpze, 5y Jo G (D, Ndx -
- f; ém :D"'u,o a,; (x, D# (gt addx ~ cg -
In the last inequality,we have used the evident estimation
~e gy (w) e G‘.‘ (W) & wg,; Cu)+ c:a_

for all 4 , since p.f. G (w) = @ Cu) - see § 1.
Now , with the help of the Young's inequality and using the

convexity of N -functions P‘; Car) we estimate
<, )
Dluy ?
Zn b Teleae (D rands &

Du,
_— .3 L6 (=2)dx +

+ .5 [ P (ea;(x,D¥u,+ 4 dx £
~E8M
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sc (u,,e)+ ei%“ f‘;?’ Ca,i._(x,l”.'(u,+u))) dx

where ¢ & (0,4) . Again by the convexity, together with
the Ac_-condition and (2.2), we successively obtain

P(a,(x, §;)) £

(5.3) .
<l 3, B Goe.cminCloyC§p), 19, (8 4.0 ) £

- G“_ "Z‘M‘Pi(MCIQ';(g"‘”, IQr"_C?,‘_)')) + cs 3

where 26 = cond M+ 1.

In § 2 (proof of Lemma 1) the inequality
mim Clgs Cadly Iqy (w) 1) & 2 g C67CG; Cud))
is proved for each |ul|l 2 ¢4 , 1, F6M. (Gf(u) is the
inverse funetion to G;(C«u) for « = 0 .) From this
inequality and owing to (1.4), i.e.,
P, (q; (w)) £ G (u) for each lwlZc,,iecM,

we deduce, using the 4, -condition

(5.4) &(mim(lgu(g’-_)l,lq;(§§)|))éc(2)G’¢ Cg,-)+c‘ 0
From the inequalities (5.3) and (5.4) we conclude

3, LPe; (6, DU+ uMds &

£y Zy G (D raNdu +e,
In the relation (5.2), we choose € € (0,41) such that

(5.5)

G -Ecgm=c, > 0 . Then, from (5.1),(5.2) and (5.5) we

have
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iy LD'u.a.‘. (x,D"(u,‘o—u))d.x =

(506) i !
=c, =, Jo G (D*Cu,+w))dx-c, (u,,e) .

Finally, it follows from Theorem 1, § 1

. A i
.%_’clu‘,d-u!w;. Is ;“ G, (D™ (u,+u))dx = oo ,

irf ¢0,...,0)e M . In the case (0,...,0) ¢ M , we consi-
’ ’

der W € W; (L) . Then, using the Young’s inequality

and applying Lemma 4, § 1 we estimate

Lluldx &[G (ul)dx+e, scy [ G Duldxsre,

for some 4 € M from which it follows that the foregoing
assertion is true and hence owing to (5.6) the proof of the
theorem is complete.

In the following we establish some assertions in which
the condition (2.16) will be weakened by means of assumptions
of monotonicity and equivalence of norms. Now, let K, L,-M ’
M, am M, from§ 2 denote the sets of indices defined in
§ 2 (pe151 and p. 155). For the multiindices 4 = (Lgyeeey By),y
#=(3,,....,4y) wedenote 4 = 4 1ff 4, = dy for all
A =A4,2,..., N .

We shall weaken the condition (2.16) in the following
way:
) T FCIAC S PR F,—M’ §:9: (50 ey -

In the case of non-Dirichlet problem we suppose that
€0,...,0) ¢ M,
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Moreover, we assume

For each ¢ e M,_ there exists <’e M, such that
(5.8)

/24 end G, (u) £ G,,(u) for each lul=c.

Theorem 8, Let the conditions (2.2),(5.7) and (5.8) be
fulfilled. Then, the relation (2.7) holds under the assump~
[
tion w« € W; ) .

Progof. Similarly as in the proof of Theorem 7, we ob-
tain

JE, hwa, (D (uyr u)dx =

(5.9 z ¢, B, Sy Gy (D* (v wN dx -
-3, fnlD"'u, a;(x, D*Cu‘, +uMdx~-c, -

In § 1 (proof of Lemma 4) the estimatiop

fL6 Cutx ) dx ﬁcsfnG(gf;)dx + ¢

o
is proved for 4« € W;’ and 4 w41,2,.., N , where G(u)
is the N =function satisfying the Az -condition. By ite-
ration of the last inequality and with the help of (5.8)

we obtain for each 4 € M,

_LG,; (D% )Vdx ﬁf“G’., (D’;u.)d-.x+c., = c, J;G,;, (P dx+ ey

Hence, due to the convexity and the Az-condition, we have
LG; C:D"'(uo+a.)) dx = %fn G; (2D%)dx +
+ % fa G; CZP*M,)dx & c, LG; (D' )dx +0, £
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In view of these estimations the relation (5.9) implies

;,?M LD:'“%“,D’(%+»>)@ =c, 02“ LG;CD’(%M,))“-

- Z, Ja D, (x, D (uyr w N - ey

From the last inequality the assertion of the theorem fol-
laws by the same argument as in the proof of Theorem 7.

In the following theorem we shall suppose that

(5.10) 4';?"1 g" Q.‘-' CJ(, g’-) = cdi'%.“ g‘: (- %3 CEL) - c‘. .

In the case of the non-Dirichlet problem we suppose, in
addition, that (0,...,0) e M, .

(5.11) = (g -Y)la,(x,§)-a;(x, 7012 0.
ieM, ¥

1 4
(5.12) 4’?_’42“) uuG‘, = "'4%41‘”“‘"6_;

for W € W;,‘ ()

Theorem 9. Let the conditions (2.2),(5.10),(5.11) and
(5.12) ve satisfied. Further, let a; (x, §1) forieM,
be independent on '5',- » 3 €M, . Then (2.7) holas.

Proof. From the condition (5.10) it follows

S fdu ey (%, D% u,en)dx 2 Sy 2, o G S YRR T

- 3, JaDuy ap (3, D% Caty 4 ) dx +

v 7
**‘2"‘1 Lo Yuw ap (x, D7 (up+ ) dx .
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Similarly as in the proof of Theorem 7, by the estima-

tion of the second member on the R.H.S. we obtain

2Ty SoDway (x,D% (uy+ ) dx =
(5.1%) e, (). T, Ja G; DY+ adx +

+.3u, JaDua, (4, D¢ Cuy v Ndx - ey (8D .
Using the Holder s inequality we estimate

p i : #,
‘;%‘z[nlb’u a; (x,D%,)dx "4‘-¢ZM, 1Dy, Ny (x :.D‘“'ol%"

.
“clu),Z, 1% 1
and hence with reaspect to (5.11), it follows from (5.13)
+ M an;’u a-,‘-,(x,fD'.'(u‘,‘rw)) dx =
(5.14) =c,(e) 2 oG D Cuy+ wNdx -
<
- C(“"’)L%M,_ D ”o,-"' c, (&) .

If e 1is sufficiently small, then ¢, (&) > 0 . From
(5.12) we deduce

7 [ Ioa
(5.15) "“#v;;"“ ot g

SoiFw, G D gt dx = o,
if (0,...,0)€ M4 - see Theorem 1, § 1. In case
€0,...,0) ¢ M,‘ we consider 4 € 'V?; (in the Dirich-

let problem). Theri, similarly as in the proof of Theorem 7

we estimate
Lluc.x)ld..x = Cc, j;G"; (D) dx +c, =

= csj;G;u (J"'(woa;-a.))d..x +C
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where 1 € M1 . Due to this estimation, (5.15) is true even
in the case (0,...0) & M, . Finelly, the assertion of
the theorem follows from (5.15) and (5.14).

Remark. If ey (X) = 0 , then (2.7) follows from the
conditions (2.2),(5.7), and (5.12). The assertion is obvious.

In the following we establish a theorem in which we study
the connection between the compactness of the imbedding and
the equivalence of norms of the space W;.' () .

We shall suppose the condition (2.9). Theorems of imbed-
ding and compactness of imbedding of the space W:', are
studied in [3]. (There Wé.", is considered, where

G“(Mn)l Gé(u) for all 4, 4 with |41 RPN
Theorem 10. If (2.9) is satisfied, then
<
4."2‘11 I D% lc,;4 + Nl
the space Wa‘; (), i.e.,

L, () is an equivalent norm in

= < P4
c, I,wllw; "'4¢ZM, D% Mg, + Nl & ¢, llulw; -
Eroof. It is sufficient to prove the first inequality.
We prove it by contradiction. Thus, there exists a sequence

{a«“? from W;’» such that

1 : |
(5.16) m'u“”buwi = 4;“1 nD‘“’np uG‘ * ““Mf lL1 ) ‘

We can suppose that [, ”wa = 4 , From the sequence

{’“’m.i we can selact a weakly convergent subsequence which

we denote again by {3}, w4, — u € W;', 5

The relation (5.16) implies ID"‘u.”Ile. —> 0 with
£
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m —» oo , for all i e M_, , and hence in view of (2.9)
it follows My —F w with m — ©© in the norm of

the space W;’, Q) .

Now, it follows from (5.16) that N« | 0 and hen-

L=
ce llwllw = (0 , On the other hand,
l“"wa‘,‘ - m la-,,,lw; = 4

which yields a contradiction and the theorem is proved.

§ 6.

The definition of a weak solution of a boundary value
problem is given by the relation (2.3) in § 2 (p. 153).

Now, we present a modification of Theorem 3, § 2, assu-
ming the simplified hypotheses.

Theorem 11. Let (2.2) be satisfied. Let us consider the
following conditions:
I. The conditions (2.16) and (2.8) are fulfilled.
II. The conditions (2.16),(2.10) and (2.9) are fulfilled.
III. The conditions (5.10),(5.11),(2.9) and (2.10) are ful=-
filled and a, (x, §5) for 1 € M4 is independent on
§ FeM, .

If one of the conditions I, II, III holds, then there
exists a solution of the problem (2.3).

Theorem 12. Let (2.2) be satisfied. Let us consider the
following conditidns:
IV. The conditions (5.7),(5.8) and (2.8) are fulfilled.
V. The conditions (5.7),(5.8),(2.9) and (2.10) are fulfilled.

If one of the conditions IV, V is satisfied, then there
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exists a solution of the Dirichlet problem (2.3).

For the uniqueness of the solution of the problem (2.3)
it suffices to assume (2.8a) in Theorem 11 and Theorem 12,

Proof of Theorem 11 and Theorem 12. The proof of these
theorems is the same as that of Theorem 3, § 2. It is suffi-
cilent to show that the hypotheses of the theorem 3, § 2 are
fulfilled. Due to the results from § 5, (2.7) holds in each
of the cases I, IT, IV and V. In the case III the condition
(2.9) implies (5.12) .and hence (2.7) holds. Finally, it is
necessary to show that in the cases II, III and V it holds
(2.11a), i.e.,

, 1
e IR IR GO E et g - @

uniformly for gz , £ eM-L 1in a bounded set and X & 2.
In the case III the condition (5.10) implies (2.1la).

In the cases II and V let us substitute the vectors

g’, (§o Jp) where « €M, and 3 &M, with the vec-
tors 7 3b), g e‘Jﬂz in a bounded set into the relation
(2.16) or (5.7), respectively. Then we deduce

§.a; (¥, ?,‘,’.Vp)+‘§mz ey (x,§e, %) 2

L‘Md

=<, L?M, gq’, Y (g-"-) - cz
and with respect to (2.2) we estimate

1% a; (%, §ay ) & eq (14,2, lg CEOD
for each 4 cMz .

From these inequalities we conclude easily that (2.11a)
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is satisfied. The rest of the proof is the same as that of
Theoram 3, § 2.

§ 7.

Applying the methods of the calculus of variation we
obtain a theorem guaranteeing the existence of a weak solu=
tion for the problem (2.3) by weaker assumptions about the
coercivity as in Theorem 11 and Theorem 12. A similar idea
was used in my paper [2].

With regard to (2.2) and (2.4) we construct the functio-
nal (2,5), i.e.,

1 & ’
OCwy=, =, [dt [P a, (x,tD%uddu- (4,2 - (u,q-)59

which is continuous in the space 'W;; () and has the Ga=
tefux’s differemtial at every point & e WG‘: - see Lemma
2, § 2 and [41.

Theorem 13. Let the conditions (2.2),(2.4),(2.9),(2.10)
and (5.7) be fulfilled. Then there exists a solution of the
problem (2.3).

Prgof. Let us look for the minimum of the functional
(2.5) on the convex closed set “, + b%y « First we prove
the coercivity and the weak lower=-semicontinuity of the funec-
tional (2.5). From (5.7),(2.9) and due to Theorem 10 we ob-

tain

luuu;'-no““l:vg N ZuYuay (x,2*w)dx = @

and hence similarly as in Theorem 2, § 2 - see also [4] - it

can be proved
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(7.1) Plw) = o .

lu—l’g

Now, we prove the weak lower-semicontinuity of & («) . Sup-
pose that 4y, —> o with m — oo (weak convergence)
in the space W;,’ .
)~ d() =D (v, v, - v) =

£D¢(ar+t(v ), Y -)dt-DP (v, v - ) =
-ja'd.t_[; 9 D"(ar w)Lay (x,D%r + LDy -~ 1)
D'rtr-f‘t])“(%-nr)-a.‘-_ (x, D%, DPo 4+ £DP(ay - ) I dx +
ﬁﬁd-t.[;&%mf'(v”-v) La; (x,D%, et 20 (v, - ) -
- a; (x, D%, DRy )] dx +_/:d.t 5.3 h i Zw, 2* (v -2) .

.La; (x, D% + tZD’.'(v,,,- v»)) -

- a.,;(x,l)"v)]d.x = A,+B,+D, .
Since a —~ 2  with m — o , it holds
L m D (awry 4y, — ar) = 0 . Due to the assumption (2.10)
it 38 A, = 0 . With respect to (2.9), we deduce that
D‘ar,,,,—» D¢ with m — c in the norm of the space
L;_; () for all { & M, . In view of the fact

Loy, ﬂw? = c, , we obtain

ﬂa,afx,])érxr+ t:D"(fxr,",-'v'))ll,?i £ ¢, foreach te<0,1)

and 1 € .M2 - see Lemma 1, § 2. Hence, using the Holder's
inequality, we conclude im D, = 0.
m—y co
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Prom (2.9) we deduce
a; (%, D%v, D% + t DP (- 2 )) =+ @, (x, D%, DPw )

with m — oo , 1in the norm of the space L";‘ (1) , uni-
formly with respect to t € <0,1> forall { €M =
see Lemma 1, § 2. Thus, we conclude “% B, =0 and
hence the lower-semicontinuity of (2.5) with respect to weak
convergence is proved.

If {upt € u, + Vp is a minimizing sequence,

’ 3

then llu,nllw;‘ s c in view of (7.1). Since Wd" is

a reflexive space there exists a subsequence {4, % from

e 3

{u,3? 80 that u«, —_ u e W;; with fe ~—» o .

e
The set 4, + VE” is weakly closed and hence « € «, +
+ Va-" . Due to the weak lower-semicontinuity of the functio=-
nal (2.5) we conclude that ¢ (4r) attains its minimum on
the set uo-o-Vr at the point a,euo-i-Vr.If ”r €
€ Vp ,then D¢ (u,w) = 0  (Gatedux gifferential at the
point 4 ) for all ~ e Vg* . Thus, 4 is a solution of
the problem (2.3).
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