

Werk

Label: Article **Jahr:** 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0013|log23

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 13,2 (1972)

ON DENSE SUBSPACES OF CERTAIN TOPOLOGICAL SPACES G.M. REED, Athens

In this paper, the following results are obtained:

(i) Each stratifiable space in which each point has a \mathscr{O} - closure preserving local base has a dense subspace which is an M_{\uparrow} -space. (ii) There exists a paracompact \mathscr{O} -space (due to R.W. Heath) which has no dense stratifiable subspace. (iii) Each semi-stratifiable space has a dense subspace which is a \mathscr{O} -space.

I. Introduction. Consider the following relationships between certain widely studied abstract spaces (all spaces are to be T_1). (1) Each M_1 -space is a stratifiable space (M_3 -space) [3]. (2) Each stratifiable space is a paracompact \mathcal{E} -space [6]. (3) Each \mathcal{E} -space is a semi-stratifiable space [4]. The converses of statements (2) and (3) are shown to be false in [5] and [1] respectively and the validity of the converse of statement (1) is an open question. However, it follows from the author's results in [9], that in each of the statements (1),(2), and (3) a first countable space of the second type contains a dense subspace

AMS, Primary: 54E20, 54B05 Ref.Ž. 3.961.3

which is of the first type. It is the purpose of this pa - per to investigate this relationship for non-first countable spaces.

II. Preliminaries.

Notation 1.1. If M is a subset of the space S, then CL(M) will denote the closure of M in S. If H is a set collection, then H^* will denote the union of the members of H.

Definition 1.2. A collection G of subsets of the space S is said to be closure preserving provided that for each subcollection H of G, $CL(H^*) = \{CL(h) | h \in H\}^*$. A collection G of subsets of the space S is said to be G-closure preserving if it is the union of countably many closure preserving collections.

Definition 1.3. A collection G of subsets of the space S is said to be a network for S provided that if $p \in S$ and D is an open set containing p, then there exists an element q of G such that $p \in q$ and $q \in D$.

<u>Definition 1.4.</u> [3] An M_{γ} -space is a regular space having a \mathcal{O} -closure preserving base.

<u>Definition 1.5.</u> [3] An M_2 -space is a regular space S having a G-closure preserving quasi-base.

<u>Definition 1.6.</u>[2] A space X is a stratifiable space $(M_3$ —space) if to each open $U \subset X$, one can assign a sequence U_1, U_2, \ldots of open subsets of X such that (a) $CL(U_m) \subset U$ for each m,

(b) $Uu_m = u$,

(c) $\mathcal{U}_m \subset \mathcal{V}_m$, whenever $\mathcal{U} \subset \mathcal{V}$.

<u>Definition 1.7.</u> [7] A σ -space is a space χ having a σ -locally finite network.

<u>Definition 1.8.</u> (Due to E.A. Michael.) A space X is semi-stratifiable if to each open $\mathcal{U}\subset X$, one can assign a sequence \mathcal{U}_1 , \mathcal{U}_2 , ... of open subsets of X which satisfy (b) and (c) of Definition 1.6.

Lemma 1.9.[4] A necessary and sufficient condition for a space X to be semi-stratifiable is that for each $x \in X$, there exists a sequence $q_1(x), q_2(x), \ldots$ of open subsets of X such that (i) $\bigcap q_1(x) = x$ and (ii) if $y \in X$ and x_1, x_2, \ldots is a sequence of points in X such that for each i, $y \in q_1(x_1)$, then x_1, x_2, \ldots converges to y.

III. Theorems. The author has not been able to decide whether each non-first countable stratifiable space has a dense subspace which is an M_1 -space. However, the following theorem is a partial answer. By the statement that G is a local base for the point p of the space S is meant that G is a collection of open subsets of S such that if p is contained in the open set D, then there exists an element Q of G such that $p \in Q$ and $q \in D$.

Theorem 3.1. Each stratifiable space in which each point has a 6-closure preserving local base has a dense subspace which is an M_A -space.

<u>Proof.</u> Let S be a stratifiable space and for each poin p of S let B(p) denote a G-closure preserving local

base for p .

Each stratifiable space is a 6-space [6]. Thus, let $H = \bigcup H_i$ denote a network for S where for each i, H_i is locally finite. For each i, let K_i denote a point set containing one point from each element of H_i and note that K_i is discrete in S. Since each stratifiable space is paracompact [3] and hence collectionwise normal, for each i, there exists a discrete collection G_i of open sets in S covering K_i such that each element of G_i contains only one point of K_i . For each i and each point μ of K_i , let $V_i(\mu) = \{ v \in B_{\mu} | v \text{ is contained in the element of } G_i \text{ which contains } \mu \}$. Note that $V_i(\mu) = \bigcup_i V_{i,j}(\mu)$ where for each i, $V_{i,j}(\mu)$ is closure preserving.

Now, let $K = \bigcup K_i$ and for each i and j, let $V_{i,j} = I \otimes \cap K \mid \emptyset \in V_{i,j}$ (n) and $n \in K_i$. It follows that K is a dense subset of S and $\bigcup \bigcup V_{i,j}$ is a 6-closure preserving base for K, regarded as space. Thus, K is an M_1 -space.

Theorem 3.2. There exists a paracompact 6 -space which has no dense stratifiable subspace.

<u>Proof.</u> In [7], Heath gave an example of a regular, countable space X which is not stratifiable. Since X is a paracompact G-space, it suffices to show that X also has no dense stratifiable subspace.

The space X in [7] is based on the existence of a collection \mathcal{F}' of subsets of N, the set of all natural numbers, such that (1) \mathcal{F}' has c members, (2) for any choice of m+m distinct members, F_1 , F_2 ,..., F_m , F_{m+1} ,...

..., F_{m+m} of F', $F_1 \cap F_2 \cap \ldots \cap F_m \cap (N-F_{m+n}) \cap (N-F_{m+2}) \cap \ldots \cap (N-F_{m+m}) \neq \emptyset$ and (3) for any two natural numbers x and y, there is a member of F' that contains exactly one of x and y. The points of X are the points of N and $F = F' \cup \cup \{N-F \mid F \in F'\}$ is a subbasis for the topology of X.

Now, suppose that S is a dense subspace of X. Since for each element F of S', both F and (N-F) are open in X, $F \cap S \neq \emptyset$ and $(N-F) \cap S \neq \emptyset$. Thus let $G' = \{F \cap S \mid F \in S'\}$. It follows that the collection G' has properties (1),(2),and (3) above with respect to the subset S of N and that $G = G' \cup \{S - G \mid G \in G'\}$ is a subbasis for S. Replacing N by S, S' by G', and S' by G', one can use the same argument given by Heath to show that S is also not stratifiable.

The proof given for the following theorem is a modification of the proof given in [9] for the existence of a dense developable subspace in a semi-metric space.

Theorem 3.3. Each semi-stratifiable space \$ has a dense subspace which is a 6-space.

<u>Proof.</u> It is sufficient to show that S has a dense subspace X which is the union of countably many subsets each of which is discrete in X.

For each point p of S, let $q_1(p), q_2(p), \ldots$ be a sequence of open sets in S as in Lemma 1.9. Denote by Ω a well-ordering of the points of S. For each j, let K_j

be the subset of S such that: (1) the first element of K; is the first element of S with respect of Ω .

(2) If I is an initial segment of K; , then the first element Λ of K; — I is the first element of S with respect to Ω such that Λ is not a limit point of I and Λ is not in Ω ; (2) for Ω in I. (3) If K; is a subset of S having properties (1) and (2) then either K; is K; or K; is an initial segment of K;

It follows that $K = \bigcup K_i$ is dense in S. For suppose that $p \in S - CL(K)$. If for each i, $q_i(k_i)$ contains p for some point k_i in K, then the sequence k_1, k_2, \ldots would converge to p and p would be in CL(K). Thus for some j, there exists no element k of K_i such that $q_i(k)$ contains p. But if this were true, p would be in K_i and hence in K. This contradicts the choice of p.

Now, let $X_1 = K_1$ and for each i > 1, let $X_i = K_i - (CL(\bigcup_{i=1}^{i-1} X_i) \cap K_i)$. It follows that $X = \bigcup_{i=1}^{i-1} X_i$ is dense in S. Consider X_i for each i. By the construction of K_i , no point of X_i is a limit point of X_i . And by the construction of X_i , no point of $\bigcup_{i=1}^{i-1} X_i$ is a limit point of X_i . Thus if X_i has a limit point Q_i in X_i , Q_i must be in $\bigcup_{i=1}^{i-1} X_i$. But for each Q_i in Q_i , Q_i in Q_i . If this were not true, the sequence Q_i , Q_i , where for each Q_i , Q_i is in $\bigcup_{i=1}^{i-1} X_i$ and Q_i is in Q_i , Q_i , would converge to Q_i and hence Q_i would be a

limit point of X_i , X_j . Thus for each m, let $X_{i,n} = 1$ p in X_i , p is not in $Q_m(Q_i)$ for Q_i in X_i , X_i , has no limit point in X_i .

Thus $X = \bigcup_{n} \bigcup_{n} X_{i,n}$ is a dense subspace of S which is the union of countably many subsets each of which is discrete in X.

References

- [1] E.S. BERNEY: A regular Lindelöf semi-metric space which has no countable network, Proc.Amer.Math.Soc.26 (1970),361-364.
- [2] C.J.R. BORGES: On stratifiable spaces, Pacific J.Math. 17(1966),1-16.
- [3] J.G. CEDER: Some generalizations of metric spaces, Pacific J.Math.11(1961),105-125.
- [4] G.C. CREEDE: Concerning semi-stratifiable spaces, Pacific J.Math. 32(1970),47-54.
- [5] R.W. HEATH: A paracompact semi-metric space which is not an M₃-space, Proc.Amer.Math.Soc.17(1966),868-870.
- [6] : Stratifiable spaces are **6** -spaces, to appear.
- [7] : On a non-stratifiable countable space, Procofthe Emory Univ. Topology Conf. (1970), 119-122.
- [8] A. OKUYAMA: & -spaces and closed mappings, I, Proc.Japan Acad.44(1968),472-477.
- [9] G.M. REED: Concerning first countable spaces, Fund.Math., to appear.

Auburn University and Ohio University

(Oblatum 28.1.1972)