

Werk

Label: Article **Jahr:** 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0013|log21

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 13,1 (1972)

UPPER BOUND FOR THE NUMBER OF EIGENVALUES FOR NONLINEAR

OPERATORS

(Preliminary communication)

Svatopluk FUČÍK, Jindřich NEČAS, Jiří SOUČEK, Vladimír SOUČEK, Praha

Introduction. Let f and g be two nonlinear functionals defined on a real Hilbert space R . We consider the eigenvalue problem

(1)
$$\begin{cases} \lambda f'(u) = Q'(u) \\ f(u) = Q \end{cases}$$

($\phi > 0$ is a prescribed number, f' and g' denote Fréchet derivatives of f and g respectively).

Under some assumptions on f and q it is known that there exist an infinite number of points $\omega \in \mathbb{R}$ and infinite $\lambda \in \mathbb{E}_1$ satisfying (1)(see [2], [3],[4]). Such a theorem was first obtained by L.A. Ljusternik and L. Schnirelman in 1935 - 1939.

In this preliminary note we give abstract theorems with

AMS, Primary: 58D05, 49G99, 47H15

Ref. Z. 7.962.5

Secondary: 35D05, 45@99

7.978.5

reasonable assumptions on the functionals f and g about the result concerning upper bound for the number of λ 's and μ 's solving the eigenvalue problem (1) and the application to the differential and integral equations.

Abstract theorems. Let R be a real Hilbert space. Theorem 1. Let f and g be two real analytic functionals on R in the sense of [11, a>0, b>0. Suppose

- (2) $f(tu) = t^{\alpha} f(u)$ for t > 0 and $u \in \mathbb{R}$,
- (3) $q(tu) = t^{\ell}q(u)$ for t > 0 and $u \in \mathbb{R}$,
- (4) there exists $c_q > 0$ such that $f(u) \ge c_q \cdot \|u\|^{2r}$ for each $u \in \mathbb{R}$,
- (5) there exists $c_2 > 0$ such that $d^2 f(u, h, h) \ge$ $\ge c_2 \|h\|^2 \cdot \|u\|^{2-2} \quad \text{for each } u, h \in \mathbb{R} ,$
- (6) q' is a completely continuous mapping from R to R.

Then the eigenvalue problem (1) has a solution only for finite or countable infinite λ s and only one possible cumulation point of these λ s is zero.

Theorem 2 (special case). Let f be a scalar product in R (generally the theorem is true if $\{u \in R\}$; $f(u) = q\}$ is a "real-analytic manifold") and g be a real analytic functional on R satisfying the relation (5) and suppose that

(7)
$$g(u) + 0 \Rightarrow g'(u) + \theta.$$

Denote by $\mathcal U$ the set of $\mathcal U$'s for which the eigenvalue problem (1) has a solution.

Then the set $g(\mathcal{U}) \cap (\varepsilon, \infty)$ is a finite set for each $\varepsilon > 0$. (The point $\gamma \in g(\mathcal{U})$ is called a critical number for the eigenvalue problem (1).)

Remark. Suppose, moreover, in Theorem 1 that

- (8) f and q are even functionals,
- (9) f' and g' are bounded operators,

(10)
$$u \in \mathbb{R} \implies q(u) \ge 0$$
, $q(u) = 0 \iff u = \theta$,

(11) f' and g' are uniformly continuous on each bounded set.

Then there exists a sequence $\{\lambda_m\}_{m=1}^\infty$, $\lambda_m \to 0$, $\lambda_m > 0$ such that only for $\lambda = \lambda_m$ the eigenvalue problem (1) has a solution and if $\alpha = k$ for $\lambda \neq \{\lambda_m\}_{m=1}^\infty \cup \{0\}$ the operator $A_\lambda = \lambda f' - g'$ maps R onto R.

Applications

Example 1. We consider the Lichtenstein integral equation

$$\lambda u(s) = \sum_{m=1}^{\infty} \int_{0}^{1} ... \int_{0}^{1} K_{m}(s, t_{1}, ..., t_{m}) u(t_{1}) ... u(t_{m}) dt_{1} ... dt_{m}$$

for $\mu \in L_2 < 0, 4 >$ under the same assumptions as in [2]. Then the assumptions of Theorem 2 are fulfilled.

Example 2. The degenerated Lichtenstein integral equation

$$\lambda u\left(s\right) = \int\limits_0^1 ... \int\limits_0^1 K_m\left(s,t_1,...,t_m\right) u\left(t_1\right) ... u\left(t_m\right) dt_1 \ ... \ dt_m$$

under the same assumptions on the function K_m as in Example 1 satisfies the conditions in Theorem 1. Analogously for the equation

$$\lambda(u,u)^n u(s) = \int_0^1 ... \int_0^1 X_m(s,t_1,...,t_m) u(t_1) ... u(t_m) dt_1 ... dt_m$$

where $\langle u, u \rangle$ is a scalar product in $L_2 \langle 0, 1 \rangle$.

Example 3. Let $\Omega \subset E_m$ be a bounded domain and we consider the weak solution of the Dirichlet boundary value problem for the equation

$$\begin{cases} \lambda (-1)^{m+1} \Delta^m u + g(u) = 0 \\ D^{\alpha} u = 0 & \text{on boundary, } |\alpha| \leq m - 1. \end{cases}$$

If 2m < m we suppose that q is a polynomial func-

tion of the degree $k < \frac{m+2m}{m-2m}$. Then the assumptions of Theorem 1 or Theorem 2 are satisfied. The same problem can be solved on the base of our abstract theorems in the case $2m \ge m$, too.

The proofs and a detailed study of examples will appear later im Ann.Scuola Norm.Sup.Pisa.

References

[1] A. ALEXIEWICZ - W. ORLICZ: Analytic operations in real

Banach spaces, Studia Math.XIV(1953),57-78.

- [2] E.S. CITIANADZE: Teoremy suščestvovanija toček minimaksa v prostranstvach Banacha, Trudy Mosk. Mat.Obšč. 2(1953),235-274.
- [3] S. FUČÍK J. NEČAS: Ljusternik-Schnirelman theorem and nonlinear eigenvalue problems (to appear in Math.Nachr.).
- [4] M.A. KRASNOSELSKIJ: Topological methods in the theory of nonlinear integral equations, Pergamon Press, N.Y. 1964.

Matematicko-fyzikální fakulta Karlova University Praha 8, Sokolovská 83

Matematický ústav Č S A V Praha 1, Žitná 25

Československo

(Oblatum 27.9.1971)

