

Werk

Label: Article **Jahr:** 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0013|log20

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 13,1 (1972)

MIXED PROBLEM FOR SEMILINEAR HYPERBOLIC EQUATION OF SECOND ORDER WITH THE DIRICHLET BOUNDARY CONDITION

Preliminary communication Alexander DOKTOR, Praha

The following mixed problem is considered in the auhor's prepared paper [3]: Let

$$L = \frac{\partial^2}{\partial t^2} + \sum_{i=1}^{\infty} \mathcal{A}_i(x,t) \frac{\partial^2}{\partial x_i \partial t} - \sum_{i,j=1}^{\infty} \frac{\partial}{\partial x_i} (\alpha_{ij}(x,t) \frac{\partial}{\partial x_j}) +$$

+ first order

be a linear operator of hyperbolic type, i.e. the condition $\bar{\alpha}_{i,j} = \bar{\alpha}_{j,i} \; ; \sum_{i,j=1}^{n} \alpha_{i,j} (x,t) x_i \; \bar{x}_j \geq \delta' |x|^2, \; x \in \mathbb{C}^n, \; \delta' > 0$

holds in the definition domain $R_{i} \equiv \Omega \times (0,T)$ of L ($\Omega \subset R^m$ is a bounded domain, $0 < T < \infty$) and let \mathcal{H}_{i} be real-valued functions. It is required to find

a function $u \in C(0, T; H^{h_1}) \equiv$ $\equiv \bigcup_{k=0}^{h_1} C^{(k)}(0, T; W_2^{(h_1-k)}(\Omega)), \quad h_1 \geq 2,$

satisfying the equation

(1) Lu = f(x,t,u(x,t),u'(x,t), $\frac{\partial u}{\partial x_1}$,..., $\frac{\partial u}{\partial x_m}$)+ h(x,t)

AMS, Primary: 35L20

Ref. Z. 7.955.3

in $\Delta (u' = \frac{\partial u}{\partial t})$, the initial conditions

(2)
$$u(0) = u_0, u'(0) = u_4$$

in Ω and the Dirichlet boundary condition in the sen-

(3)
$$\mu - q \in C(0, T; \mathring{H}^{h_0}) \equiv C(0, T; H^{h_0}) \cap C(0, T; \mathring{W}_2^{(1)}(\Omega))$$
.

By means of successive approximations one can prove a local existence theorem:

Theorem A. Be $A \ge \lceil m/2 \rceil + 2$ an integer, $\partial \Omega \in C^{(k+1),1}$, and let the coefficients of L be of the class $C^{(k-1)}(\overline{\Omega})$. Be

$$u_0 \in W_2^{(h)}(\Omega), u_1 \in W_2^{(h-1)}(\Omega),$$

$$h \in C(0, T; H^{h-2}) \cap C^{(h-1)}(0, T; L_2(\Omega))$$
,

and let $f(x,t,z_1,...,z_{m+2}) \in C^{(k-1)}(\overline{\mathbb{Q}} \times C^{m+2}), D^{k-1}f$

be locally A-Hölder continuous in the variables x_1, \ldots, x_{m+2} for some $A \in (0, 1)$. Assume further that the necessary compatibility conditions hold.

Then there exists $\Delta \in (0, T)$ such that our mixed semi-linear problem (1) - (3) has on $\langle 0, \Delta \rangle$ a unique solution $\mathcal{U} \in \mathcal{C}(0, \Delta; \mathcal{H}^{A})$.

Then a question of a global solution is considered using an apriori estimate:

<u>Definition</u>. We say that an apriori estimate for the semi-linear mixed problem (1) - (3) holds, if

$$\exists C_A \ge 0 \forall t \in (0,T) : \mu \in C(0,t;H^{A_0})$$
 is a solution of (1) - (3)

$$\Longrightarrow \sum_{t=0}^{\lceil m/2 \rceil + 2} \| u^{(k-t)}(b) \|_{W_2^{(t)}(\Omega)} \leq C_A \ \forall b \in \langle 0, t \rangle \ .$$

A global solution of the problem is found by continuation of the known local solution from Theorem A.

Theorem B. Let the assumptions of Theorem A be satisfied and, moreover, let an apriori estimate hold.

Then there exists a unique solution $u \in C(0, T, H^{4\epsilon})$ of the mixed problem (1) - (3) on the whole interval $\langle 0, T \rangle$.

Remark: If our non-linear term does not depend on derivatives of μ , then Theorems A,B hold for $\mu = \lfloor m/2 \rfloor + 1$, too.

In the last paragraph of the mentioned paper some sufficient conditions for the existence of apriori estimate are given, mainly.

Theorem C. Let f be bounded in $\overline{A} \times C^{m+2}$ together with all derivatives up to the order $\lceil m/2 \rceil + 1$. Then the apriori estimate holds.

Theorem D. Be q = 0 and let the assumptions of Theorem A be satisfied. Let for $u \in C(0, t; \mathring{H}^2)$, $t \in (0, T)$,

Lu = $f(x, h, \mu(x, h))$, $\mu(0) = \mu_0$, $\mu'(0) = \mu_4$. Let us suppose that there exists a real-valued function F(x, t, x) defined on $\overline{A} \times C$ such that $\partial F/\partial (\operatorname{Re} x) = \operatorname{Re} f$, $\partial F/\partial (\operatorname{Im} x) = \operatorname{Im} f$, $F \in C_F$, $(C_F \ge 0)$, and either $-\partial F/\partial t \le C_F'(C_F - F)$ or $|\partial F/\partial t| \le C_F'(1 + |x|^2)$, $C_F' \ge 0$.

and consequently apriori estimate in case m = 4 holds.

Theorem E. Let the assumptions of Theorem A be satisfied and let $u \in C(0,t;H^2)$, $t \in (0,T)$, be such a solution of (1) - (3) that (4) holds. Let the function f(x,t,z) further satisfy

$$\left|\frac{\partial f}{\partial t}\right| \le C_{\rho} \left(1 + |z|^{\alpha+1}\right) ,$$

$$\left|\frac{\partial f}{\partial z}\right| \le C_{\rho} \left(1 + |z|^{\alpha}\right)$$

where $\alpha = 2/m - 2$ for m > 2, $0 \le \alpha < \infty$ for $m \le 2$, $C_g \ge 0$.

Then there exists a constant $C_2 > 0$ such that $\sum_{i=0}^{2} \| \omega^{(2-i)}(b) \|_{W_2^{(i)}(\Omega)} \le C_2 \quad \forall b \in \{0, t\}$

and consequently apriori estimate holds for m=2, m=3.

Finally it is shown in examples that the results of J. Sather from [1],[2] are included as a particular case.

References

- [1] J. SATHER: The initial-boundary value problem for a non-linear hyperbolic equation in relativistic quantum mechanics, J.Math.Mech.16(1966),27-50.
- [2] J. SATHER: The existence of a global classical solution of the initial boundary value problem for $u + u^3 = f$, Arch.Rat.Mech.Anal.22(1966), 292-207.
- [3] A. DOKTOR: Mixed problem for semilinear hyperbolic equation of second order with the Dirichlet boundary condition. To appear in Czech.Math.J.

Matematicko-fyzikální fakulta Karlova universita Praha 8, Sokolovská 83 Československo

(Oblatum 21.2.1972)

