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MIXED PROBLEM FOR SEMILINEAR HYPERBOLIC EQUATION OF SECOND
ORDER WITH THE DIRICHLET BOUKDARY CONDITIONR

Preliminary communication

Alexander DOKTOR, Praha

The following mixed problem is econsidered in the au-
hor s prepared paper [3] : Let
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be a linear operator of hyperboliec type, i.e. the condition
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a,‘."_-a. §1a.y‘(x,t)z4 z 2dll’, zeC™, d>0
holds in the definition domain A = Q. x (0, T) of L
( & c R™ 1s a bounded domain, 0 <= T =< ) and
let h‘-' be real-valued functions. It is required to find
a function & € C(0,T;H"’) -
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satisfying the equation

(1) Lu=f(x,t,w(x,t), & (x, t),” ,...,g:’)-o-h(u t)
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in Q(u’' = -g"?"— ) , the initial conditions

(2) “(0)94&0, MI(0)=AL4

in Q and the Dirichlet boundary condition in the sen-

(3) u -g eCCO,TyA™ = cco,TyH* nCC0, T, %, ).

By means of successive approximations one ean prove a
local existence theorem:

Theorem A. Be ¢ = [m /21 + 2 an integer,
o0 € C™ """ | ana let the coefficients of L  be of

the class C™ " (B ) . Be

n) -1
w,e W, (), w el () |,

mecco, T, M nc™co,T,L, 20 ,
¢ © CCO, T, 0™, ¢eC(o, T; #™)
and let £(X,t,2,,...,%,,,) € A (T x ™2 ), ¢

be locally A -Holder continuous in the variables x,,...

veey % for some A € (0,4> . Assume further that

ned
the necessary compatibility conditions hold.

Then there exists 4 €0,T)> such that our mi-
xed semi-linear problem (1) - (3) has on < 0, 4> a uni-

que solution u € C(O,A;H"’) "
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Then a question of a global solution is eonsidered
using an apriori estimate:

Definition.We say that an apriori estimate for the se-
mi-linear mixed problem (1) = (3) holds, if

3C, 2 0¥te (0,T): 4 eC(0,t;H*)  1s a solution

of (1) - (3) =

[n/a1+2

- = (Pl IS

w‘“’(a, & CA Y/b [ 4 O,f > .

A global solution of the problem is found by continu-
ation of the known local solution from Theorem A.

Theorem B. Let the assumptions of Theorem A be satis-
fied and, moreover, let an apriori estimate hold.

Then there exists a unique solution « e C(0,T; H*)
of the mixed problem (1) - (3) on the whole interval
<0, T)> .

Remark: If our non-linear term does not depend on de-
rivatives of « , then Theorems A,B hold for Jo = [m /2141,
too.

In the 1last paragraph of the mentioned paper some suf=-
ficient conditions for the existence of apriori estimate are
given, mainly*

Theorem C. Let £ be bounded in & x C™*% toge-
ther with all derivetives up to the order [m /21 + 1 .
Then the apriori estimate holds.

Theorem D. Be ¢ = Q0 =and let the Da:=;sump1:10ns of Theo-
rem A be satisfied. Let for « & C(0,t;H?) ,te(0,T),
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Lu = £Cx,hyat(x, ), w(0) m sy, 4'CO0) =, .
Let us suppose that there exists a real-valued function
F(x,t,2) defined on & x ¢ such that
8F/9(Re z)=Ref, OF/3(Im 2)=Imf,Fe C ., (C .= 0),
and either - dF/dt € C. (C ~F) or |3F/0t| £
£C, (M+121?), CL=0.

Then there exists a constant (, > 0 such that

(4) llu.(b)lwzw(m+ ﬂw'(/a)l,_am_) =C Yre<0,t>

and consequently apriori estimate in case m = 1 holds.

Theorem E. Let the assumptions of Theorem A' be satis~
fied and let w« € C(0,t;H%) , te (0, T > ,  be sueh
& solution of (1) - (3) that (4) holds. Let the funetion
f(x,t,z) further satisfy

af
l?i‘" € C, (1+ 121"y |
l—g%—l € C, (1 +121%)

where a = 2/m=-2 for m >2, 0 € a < ® for

me 2, Ce=z0 .
Then there exists a constant cn. > 0 such that

2
Q-1)
4'-4-.0!& (b)ﬁw;n‘n.’ = Ca Yo e<0,t>

and consequently apriori estimate holds for m =2, m = 3 .

Finally it is shown in examples that the results of J.
Sather from [1],(2] are inecluded as & particular ecase.
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