

## Werk

Label: Article **Jahr:** 1972

**PURL:** https://resolver.sub.uni-goettingen.de/purl?316342866\_0013|log19

### **Kontakt/Contact**

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

#### Commentationes Mathematicae Universitatis Carolinae

13,1 (1972)

# SURJECTIVITY AND FIXED POINT THEOREMS (Preliminary communication) Josef DANES. Praha

Let X be a LCS (Hausdorff locally convex space), C
a closed convex subset of X, exp C the set of all subsets of C and A a partially ordered set such that:
Va, be A & max fa, b & e A. A mapping a:
: exp C \rightarrow A is said to be a mnc (measure of noncompactness) on C if \( a \) (\( \overline{co} \) M) = \( a \) (M) for all M \( \overline{c} \) exp C.

Consider the following conditions on a mnc \( a \) on C:

(1) M \( \overline{c} \) N \( \overline{c} \) c implies \( a \) (M \( \overline{d} \) N \( \overline{c} \) exp C implies \( a \) (M \( \overline{d} \) N \( \overline{c} \) exp C implies \( a \) (M \( \overline{d} \) N \( \overline{c} \) exp C implies \( a \) (M \( \overline{d} \) N \( \overline{c} \) exp C implies \( a \) (M \( \overline{d} \) (N) \( \overline{c} \) exp C implies \( a \) (M \( \overline{d} \) (M) \( \overline{c} \) exp C implies \( a \) (M \( \overline{d} \) (M) \( \overline{c} \) exp C and M \( \overline{c} \) exp C

On any NLS (normed linear space) X there are two natural mnc's  $\pi_X$  and  $\infty_X$  defined by  $\pi_X(M) = \inf \{ \epsilon > 0 : M \text{ can be covered by a finite number of } \epsilon \text{-balls } \}$ ,  $\infty_X(M) = \inf \{ \epsilon > 0 : M \text{ has a finite } \epsilon \text{-covering } \}$  (here  $A = [0, +\infty]$ ).

together imply  $\mu(x + M) = \mu(M)$  (for C a cone).

Let F; C -> X be a continuous mapping and  $\mu$  a

Ref. Z. 7.978.5

AMS, Primary 47H10, 47H15 Secondary 46B99

mnc on  $\mathbb{C}(C \cup F(C))$ . We shall write  $F \in \mathfrak{D}(\mu)_{\Xi}$   $\Xi \mathfrak{D}(\mu, C)$  if  $M \subseteq C$  and  $\mu(F(M)) \geq \mu(M)$ together imply that M is relatively compact.

Theorem 1. Let X be a LCS,  $\theta \in C$  an open subset of X,  $F: \overline{C} \longrightarrow X$  a mapping such that  $F \in \mathcal{D}(\omega, \overline{C})$  where  $\omega$  is a mnc on  $\overline{c\sigma}(C \cup F(C))$  satisfying Conditions (1) and (4). If Fx + tx for all  $x \in \partial C$  ( = the boundary of C) and all t > 1, then F has a fixed point in  $\overline{C}$ .

Theorem 2. Let X be a NLS,  $\omega$  a mnc defined on bounded subsets of X and satisfying Conditions (2),(3) and (5). Let  $iC_m!_{m=1}^\infty$  be a sequence of open, symmetric, strictly starshaped (i.e.,  $[0,1)_X \subseteq C_m$  for each  $x \in \partial C_m$ ) subsets of X such that  $dist(0,\partial C_m) \to \infty$ . Let  $F: X \to X$  be a mapping such that  $F \in \mathcal{D}(\omega)$ ,  $|\Phi(x)| \to \infty$  as  $|x| \to \infty$ ,  $|x| \to \infty$ , and all  $|x| \to \infty$ . (Here  $|\Phi| = |x| \to \infty$ ) Then  $|x| \to \infty$  is surjective.

Corollary 1. Let X be a NLS and C, F,  $\omega$  as in Theorem 1. Suppose that for each  $x \in \partial C$  there is a function  $g_x : [0,+\infty] \longrightarrow [0,+\infty]$  such that a,b>0 implies  $g_x(a+b) > g_x(a) + g_x(b)$ . If  $g_x(\|Fx\|) \leq g_x(\|x\|) + g_x(\|x-Fx\|)$  for each  $x \in \partial C$ , then F has a fixed point in  $\overline{C}$ .

Corollary 2. Let X, C, F,  $\alpha$  be as in Theorem 1. Suppose that  $0 \in C$  and that C is strictly starshaped. If  $F(\partial C) \subseteq \overline{C}$ , then F has a fixed point in  $\overline{C}$ .

Corollary 3. Let X be a NLS,  $\alpha$  a mnc on bounded subsets of X satisfying Conditions (1),(4) and (5),  $F: X \to X$  a mapping such that  $F \in \mathcal{D}(\alpha)$ . Let  $\{C_m\}_{m=1}^{\infty}$  be a sequence of open subsets of X containing 0 and  $\{a_m\}_{m=1}^{\infty}$  a positive sequence tending to  $+\infty$  as  $m \to +\infty$ , such that  $\|F_X\| \leq \|x\| - a_m$  for each  $x \in \partial C_m$   $(m \geq 1)$ . Then I - F is surjective.

Corollary 4. Let X be a NLS,  $\mu$  a mnc as in Theorem 2,  $F: X \longrightarrow X$  a mapping with  $F \in \mathcal{D}(\mu)$ . Suppose that F has an asymptotic derivative  $F'(\infty)$  such that  $I - F'(\infty)$  is an (topological) isomorphism of X. Then I - F is surjective.

Remarks. 1. Analogous results hold for mappings of the form  $T = \mathcal{S}$  .

- 2. Some results of [3] and [4](and [1]) can (and will) be proved for mappings of this type.
- 3. For some mnc's  $\mu$ , if  $F: X \longrightarrow X$  ( X a NLS) is in a certain subclass of  $\mathcal{D}(\mu)$  and has an asymptotic derivative  $F'(\infty)$ , then  $F'(\infty) \in \mathcal{D}(\mu)$ .
- 4. Some mnc's induce, in a natural way, the mnc's on factor spaces.
  - 5. If X is a NLS and  $\sigma_{X}^{*}(\varepsilon) = \sup \left\{ \left\| \frac{x+\eta}{2} \right\| : \right\}$

 $|x,y \in X, |x-y| \ge \varepsilon, |x|, |y| \le 1;$ then  $\frac{1}{2} \alpha_X \le q_X \le q_X^{(1)} \cdot \alpha_X \le \alpha_X$ .

A detailed study of these problems including complete references and applications to nonlinear integral and differential equations will be given in subsequent papers.

#### References

- [1] M.A. KRASNOSELSKIJ: Topological Methods in the Theory of Monlinear Integral Equations, Moscow 1956 (in Russian).
- [2] B.N. SADOVSKIJ: On measures of noncompactness and dersifying operators, Problemy Mat.Anal.Složnych Sistem 2(1968),89-119(in Russian).
- [3] V.B. MELANED: On the calculation of the rotation of a completely continuous field in the critical case, Sibirsk.Mat.Z.2(1961),414-427(in Russian).
- [4] P.P. ZABREJKO and M.A. KRASNOSELSKIJ: The calculation of the index of a fixed point of a vector field, Sibirsk.Mat.Z.6(1964),509-531(in Russian).

Matematicko-fyzikální fakulta Karlova universita Praha 8, Sokolovská 83 Československo

(Oblatum 13.10.1971)