

#### Werk

Label: Article **Jahr:** 1972

**PURL:** https://resolver.sub.uni-goettingen.de/purl?316342866\_0013|log18

#### **Kontakt/Contact**

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

### Commentationes Mathematicae Universitatis Carolinae

13,1 (1972)

## A CONSEQUENCE OF A THEOREM OF L. FUCHS

Ladislav PROCHÁZKA, Praha

In his paper [2] L. Fuchs has proved that any direct summand of a separable torsion free abelian group is likewise separable. As a simple consequence of this result we get the following proposition generalizing a well known Beer theorem [1, Theorem 49.1].

Theorem. A separable torsion free abelian group G is completely decomposable if and only if G belongs to some Baer class  $\Gamma_{\alpha}$ .

<u>Proof.</u> The necessity being obvious, it remains to prove the sufficiency of the below pronounced condition only. We start with the formulation of the following two propositions from [3]:

Lemma 1. If  $A_i$  (i=1,...,m) are torsion free groups such that  $A_i \in \Gamma_{\alpha_i}$  (i=1,...,m) then there exists an ordinal  $\beta \subseteq \max (\alpha_1,...,\alpha_m)$  with  $A_1 \oplus ... \oplus A_m \in \Gamma_{\beta_m}$ . (See [3, Lemma 4].)

Lemma 2. Let B be a pure subgroup of finite rank in a torsion free group A. If  $A \in \Gamma_{\beta}$  then  $A/B \in \Gamma_{\gamma}$  for some  $\gamma \in \beta$ . (See [3, Lemma 51.)

AMS, Primary: 20K20 Ref.

Ref. Z.: 2.722.1

Now, let G be a separable group belonging to some  $\Gamma_{\alpha}$ ; by induction on  $\alpha$  we shall prove that G is completely decomposable. For  $\alpha=4$ , G is countable and the complete decomposability of G follows by a Baer theorem ([1, Theorem 49.1]). Thus let  $d<\alpha$  and assume our assertion has been proved for all separable groups belonging to  $\Gamma_{\beta}$  with  $\beta<\alpha$ . By the definition of Baer classes there exists a pure subgroup S of finite rank in G such that  $G/S=\overline{G}=\sum_{i\in I}\oplus\overline{G}_i$ , where  $\overline{G}_i\in\Gamma_{\alpha_i}$ ,  $\alpha_i<\alpha$  ( $i\in I$ ).

The group G being separable, S is contained in a completely decomposable direct summand H of finite rank in G, thus we have

$$G = H \oplus K .$$

Since H is completely decomposable it suffices to show that K is so as well. First of all we may write

(2) 
$$K \cong G/H \cong (G/S)/(H/S)$$
.

If we put  $H/S = \overline{H}$  then  $\overline{H}$  is a pure subgroup of finite rank in  $\overline{G} = \underset{i}{\longleftarrow} \sum_{i=1} \bigoplus \overline{G}_{i}$  and hence we get  $\overline{H} \subseteq G_{i_1} \oplus \dots \oplus \overline{G}_{i_m}$  for suitable indices  $i_1, \dots, i_m \in I$ . Defining  $\overline{F} = \overline{G}_{i_1} \oplus \dots \oplus \overline{G}_{i_m}$  and  $\overline{J} = I \setminus (i_1, \dots, i_m)$ , we have  $\overline{G} = \overline{F} \oplus \underset{i}{\longleftarrow} \overline{G}_{i}$  and  $\overline{H} \subseteq \overline{F}$ . By Lemma 1 it is  $\overline{F} \in \Gamma_{\Lambda}$  where  $\beta \subseteq \max(\alpha_{i_1}, \dots, \alpha_{i_m}) < \alpha$ . In view of (2) we infer that

# (3) $K \cong \overline{G}/\overline{H} \cong \overline{F}/\overline{H} \oplus \sum_{i \in I} \oplus \overline{G}_{i} .$

Since  $\overline{F} \in \Gamma_{\beta}$ , Lemma 2 implies  $\overline{F}/\overline{H} \in \Gamma_{\gamma}$  with  $\gamma \not = \not = \beta < \infty$ . By the Fuchs theorem from [2] and (1) K is separable; hence in view of (3) by the same Fuchs theorem we conclude that the groups  $\overline{F}/\overline{H}$  and  $\overline{G}_{i}$  ( $i \in \mathcal{I}$ ) are likewise so. Thus by inductive hypothesis the groups  $\overline{F}/\overline{H}$ ,  $\overline{G}_{i}$  ( $i \in \mathcal{I}$ ) and simultaneously K are completely decomposable. This finishes the proof.

#### Ref erences

- [1] L. FUCHS: Abelian groups, Budapest, 1958.
- [2] L. FUCHS: Summands of separable abelian groups, Bull. London Math.Soc.2(1970),205-208.
- [3] L. PROCHÁZKA: A note on completely decomposable torsion free abelian groups, Comment.Math.Univ.Carolinae 10(1969),141-161.

Matematicko-fyzikální fakulta Karlova universita Praha 8, Sokolovská 83 Československo

(Oblatum 12.1.1972)

