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ON GENERATION OF TORSION THEORIES
Pavel JAMBOR, Praha

l. Introduction. The purpose of this paper is to con-
tinue the investigation begun by Gardner [6] of torsion clas-
ses which are closed under pure subobjects. The results of
the section 2 reduce the problem of classification of torsion
theories for a given Abelian category to the classification
of indecomposable and super-decomposable objects. In parti-
cular, the theorem 2.8 leads to a succession of typical ap-
plications in module categories which are presented in Sec-
tion 3.

Let € be a category. A torsion theory for ¢ con-
sists of a couple (M , &£ ) of classes of € which are or-
thogonally closed with respect to the bifunctor Mne (X,Y)
- the set of morphisms from the object X inta the object Y
in the class (& ¢ of all objects of € , In other words,
Mm==LY={Me 0 ¢ lM“,e(.M.,L) consists at most of
one morphism for YL e &£} ,
£ =M*={LeOlre IMot, (M,L) consists at most of
one morphism for YM ¢ M} ,

M  is said to be the torsion class and & the torsion-
free class. The torsion theory (M , &) is called the
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trivial torsion theory, if M or & consists of 04 €.
If € 1is a subcomplete Abelian category, i.e. an Abelian
category such that the family of subobjects S (A) of any

Ae 0o ¢ is a set and the infinite coproducts
-x.‘Lch U, (sometimes called the direct sums and denoted

by ® ), and the infinite products ‘T:TI (A/u“) ( some-
times called the direct products ) exist in ¢ for any sub-
set (Ug gy € S(A) and any A€ 0 ¢ , then by
[4],p.224 any torsion theory (M , &) for € possesses
the properties

i) M AL =0 (a zero-object),

ii) M is closed under quotients,

iii) & is closed under subobjects,

iv) For YA e Ok ¢ there exists a short exact
sequence 00— M —» A—> 1, — () such that M e M
and L € & and this is equivalent to the existence of
the idempotent radical ~ (a subfunctor of identity such
that f € Mor, (A, B) implies that x (f) is

the restriction of f on % (A) ,nen = x and

n (A/,_(A))s 0,for YA e 0& € ) such that
M =iMe 0&€CIniM)= M}

and
L wi{lLe 0l e(L)= 03,

In this case, the maximal torsion subobject of a given object

A s
(A= ViU 6 SCAYIU_e¢M}= im fUU, —> A} =
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= NiVye S(A)IA/Va‘e L3 = won{A— ‘I;’T(A/V’)} ,

where the image, respectively the kernel is related to the
universal morphism induced by the canonical injections, res-
pectively projections. Consider a class £ of short exact
sequences of € , where ¢ is an Abelian category such
that every sequence isomorphic to a sequence in £ 1is also
in & ., The corresponding class of monomorphisms (epimorph-
isms) is written E_, CE_ ) . €  is called a proper

class (sometimes called the purity) if it satisfies:

i) Every split short exact sequence is in. £ ,

ii) If x,B e €, , then Bocc e £ , if defined.

m ?
1i1) If o, B € €, , then Beocx € €_,if defined.
iii) 1f Box e £, , then x e &, -

iiil) If B e x € Se, then 3 e €, .

Since Em C Se) is closed under push-outs (pull-backs),

it is equivalent to the original definition stated in [9],
p.368., If 0—>» A—>B—>C —» (0 is a proper exact se-
quence, we shall say that A is an € -pyre gubgbjeﬁ of
B  and denote it by A <. B . The purity, where every
subobject is pure, will be denoted by mar and the class
of ‘all the split short exact sequences of € denote by
__mu‘m. . Now, we are ready to introduce the term € -essen-
tial extension (see, for example [101) for Abelian catego-
ries. For A Se B , we shall say that B is an € -es-
sential extension of A if every g € Moy, ,(B,X ) such
that @o 1 e E’m , where 4 is the inclusion, is a mono-

morphism. Furthermore, if B ¢ I, i.e. B is an £ zin-
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Jjective object (i.e. injective with respect to the proper
class € ), we shall say that B is an € -injective
envelope of A and denote it by E_ CA) . If in the
definition of € -eseential extension we will demand the
weaker condition that @ o 1 , being a monomorphism, im-
plies that ¢ is a monomorphism or equivalently if a

C e SCB) satisfies C A A = 0, then C = 0, wve
will get the wegk £ -essential extension and similarly the
weak € =-injective envelope.

We now go about the task of constructing several speci-
fic torsion theories for an Abelian category ¢ with res-
pect to a given proper class & of short exact sequences
of € , An objest P is called ¢ -gimple (weaskly € -sim-
ple) if it has no £ -pure subobjecta (respectively, no & -
pure subobjects non-isomorphic ta P ) except 0 and P .
Let us denote the representative class of non-isomorphic

€ -simple objects (resp. weakly £ -aimple objects) by 5&
(resp. gb ). On the other hand, an object A is called

€ -thick (strongly E -thick) if A & 0 and there is no

€ -pure £ -simple (weakly € -simple) subobject of A
except sero. Let us denote the representative class of non-
isomorphic & -thick (resp. strongly € -thick) objects of
€ by ¢85, (resp. cga ). In particular, gm is
the class of indecomposable objects and o gm will be
called the class of super-decomposable objects of < , Let
v € S, , the torsion class T, . = £ £ 3** will be cal-
led the class of & -.p -primary objects and similarly the
torsion class D-p,c = {'4:,}“‘ will be called the class of

€ -4 -divieible objects. In case that £ = mat , we
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simply shall say = ri y respectively s -divisible

objects. The corresponding idempotent radical for T, a.

will be denoted by K
+ %

classes are F, = {p3* and R, ={pn? respective-

, and the corresponding torsion-free

ly. In general, D, = { S‘}" , Tespectively Bl - {593"*
will be called the divisible, respectively the reduced ob-
dects which correspond to the torsion theory (T, , F.') ,
where T, = 8, t**+ |

It is easy to check that the classes T, ,F, .. , D,...
and Rm coincide with the classes of ordinary torsion
objects T , ordinary torsion-free objects F , ordinary
divisible objects P and ordinary reduced objects R res-
pectively, in the category of Abelian groups. Moreover, in
the section 3 it is shown that this coincidence partially
holds in the module category , Mool , where A\ is a gemi-
Artinien Dedekind ring, i.e. a Dedekind ring ([2],p.134),

where for any nonzero ideal [ different from A , At 1

has a nongero gocle /am[A/IJ . By the gocle », [A]
of an object A of the Abelian category ¥
subobject of A which is defined as follows:

S¢[A) = ViM e SCA)IM » p , for some p e S, 3.

s we wmean the

Otherwise, we shall set the zero subobject as the socle.
Similarly, we can define the f+ —socle

§plA)=ViMeSAIMa nl,tora resS, .

Whenever we replace Ss by g‘ , We will attach to the
~
corresponding term the wavy line, for example 1, = (g‘

Ye shall say that an idempotent radical x is an € =torsion
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radical if x(A)c, A , for YA € 0 ¢ andA <, B
implies that x (A) = A A 1 (B) . Obviously, it implies that
the corresponding torsion class M is closed under £ -
pure subobjects.

We will frequently use the following notation:

K, =~ the field of quotients of an entire A ,

z - the entire of integers,
® = Kz - the full rational group,

P - the set of all prime integers,

m
Q1) ={—e®|m is prime to every p e P\I1} for
IcP,

Z(p™) , 1€ < 0 - the cyclic -primary Abelian
’ T

group of order 11"‘ ,for pelP .
Z(p%) - fv -Priifer Abelian group, for n e P

A,ﬁ - the ring of p -adic integers, for n e P

A product (resp. coproduct) of copies of an object A
will be denoted by gA_)I (resp. (A_)‘fz ), where ] is the
index-set. Whenever in this paper Ext , respectively Tor ,
will appear, it will have the usual meaning it has in the ho-
mological algebra.

+ On T n of torsion theori
Proposjtion 2.1. Let € be a subcomplete Abelian cate-

gory which possesses a generator W and (M ,€) a non-

trivial torsion theory for € , Then U 4 ™ . Moreover,
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if the generators are closed under taking nonzero subob-
jects, then UL € &£ .

Proof. Let I, € & . By the definition of generator
[1]1,p.113 there exists a morphism f € Mot (U , 1)
which cannot be factorized through the gzero subobject. More-
over, if the generators are closed under taking nonzero sub-
objects, then the largest torsion subobject ~ (U) c U
has to be necessarily zero, i.e. L € & , q.e.d.

Corollary 2,2. Any nontrivial torsion-free class of Abe-
lian groups containa all the free Abelian groups and conse-
quently, the class of Abelian groups which have no free di-
rect summand forms the largest nontrivial torsion class
in Abelian groups.

The proof of the following proposition is straightfor-
ward and hence omitted.

Proposition 2.3. Let f,, c ?/2 be two proper classes
of short exact sequences of the Abelian category ¢ . Then:
1) There exist 551 and 5‘2 such that Sel: s,1 ) 11) T,‘, = 'l"‘2 and

R,

,oRe, » 1 E cF, ema D, cB iV 5 (Alo

> 552 [Al , for VA e Q& € ., |Moreover, if € is an ar-
bitrary proper class of short exact sequences, then for any

~
S, and c B there exist g‘ and ¢ S, such that
,'5"¢:§E andcsgcc.s .

Proposition 2.4. let € be a proper class of short ex-
act sequences of the subcomplete Abelian category ¢ which
has the € -injective envelopes and let (M ,&) be a non-
trivial torsion theory for ¢, If & is closed under ta-
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xing € -injective envelopes, then 7”7 is closed under
€ -pure subobjects. Conversely, if 7 is closed under
€ -pure subobjects and the corresponding idempotent radi-
cal is € -torsion, then & is closed under taking
€ -injective envelopes.
Proof. Let &£ be closed under taking £ -injective
envelopes and let L ¢ &£  be arbitrary. If M € M  and

N e M , We have the exact sequence
Moty (M, Eg (L)) = 0— Mox, (N, E, (L)) —>
— & - E,.xtLLM/N, E((L)) = 0

which implies Mov, (N, E,CL)) = 0 , and since the
functor Mor.e (N,.) is left-exact, we have
Mov, CN,L) = 0 .

Now, let the converse-conditions be satisfied and let

Le & be arbitrary. Then x(E (L)AL = x(L) c L

and since I . E; (L) , we have M(E’CL))/\ L Se

g, # CEL (L)) ice. R(E,(LNALeMAL=0
which implies 1« (E‘ (L)) =0 , q.e.d.
Corollary 2.5. The torsion classes Tﬂ,, anda T,

are closed under ¢ -pure subobjects provided that € sa-
tisfies the conditions given in the prop.2.4 and € has
weak- £ -injective envelopes.

Proof. By the prop. 2.4 it is sufficient to show that
F“ and Pﬁ" " are closed under taking & -injective
envelopes. Precisely, according to the proof of the propo-
sition 2.4, it is sufficient to show that ]“n,“ and F'_
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are closed under taking weak € -injectiv
Let F e F'n,e and E (F) be its weak £ -in-

Jjective envelope. If f & Mmg (18, E._ (F)) , then
imf A F is necessarily gzero since otherwise

n~imf AFe Fﬂ’e Yields the contradiction. Hence
4mf = 0 , The case of Fc can be proved in a similar
way, q.e.d.

Proposition 2.6. Let & be a proper class of short
exact sequences of the Abelian category ¢ ., Then:

i) 1 i)’b is closed under taking & -pure subob-
Jjects and M is another such a torsion class, then there
exists a representative class @ of non-isomorphic objects

~ ~
of Do A M such that @ c ¢ 5. ,

ii) There exists a representative class £ of non-

isomorphic objects of imum. such that D c crvSm .

Proof. 1) Let Me B, A M  ana M 4 0 ,then by the
dcf::L:Iition of it s M is not weakly & -simple and sin-
ce :De ie closed under & -pure subobjects, M is strong-
ly € -thick.

ii) It is an immediate consequence of i).

Proposition 2.7. Let € be an Abelian category. Then:

i) If A s Tmae (resp. T*h-.w ), then A is an

essential extension of its socle (resp. its fv =socle).

i1) If p, p'e S,,, with p & p' then Ty bia D
nTﬁ’,m = {01 .

111) If A € Ty gy , then A is 4 -divisible for
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pn' + p in Sp,, .

iv) If A € T@-,M and .fi -divisible, then
Ae N/max ¢
Furthermore, if € is subcomplete with injective envelo-
pes, then the primary decomposition of torsion objects from
T mas holds iff for each f & S,.,, ,the functor
Ar—> mﬂ(A) is exact on the full subcategory T,. .

Proof. [4], pp.230,234.

Theorem 2.8. Let £ be a proper class of short exact
sequences of an Abelian category € and let 7 be a tor-
sion class in ¢ which is closed under £ -pure subobjects.
Then

~ ~
M=i(M~AS)u(Mn eSg)¥** .

Proof. Let M'=4(M A B,) U (M A dBII** .

Let us denote the torsion-free class corresponding to m’
by &’ andlet L € &£’ be arbitrary. It is sufficient
to prove that Mor, (M,L) = 0, for YM € M . Let
fe Mox, (M,L) , then imf € M A &£’ ana sin-
ce M is closed under £ -pure subobjects and M ' A &’ =
= {03, <mf has no non-zero E -pure subobject either

~
from g‘ or r.Ss , hence imf = 0 , q.e.d.

Corollary 2.9. Any torsion theory (M , £ ) for an
arbitrary Abelian category ¢ yields the egquality

m=4{(m ngm) v (MAGAISMH*"' ‘



3. An application
The proof of the following proposition is straightfor-

ward and hence omitted.

Proposition 3.1. Let A be a unitary ring. Then the
following assertions hold in the category AMo-d. :

~

i) cSpar + A iff there exists a left-ideal

Je A such that A/g € cﬂgw :

A
ii) Spa. consists of the quotients /J , where
J are the maximal left ideals.
iii) gm can be chosen such that it consists of
Sw and representatives of quotients A/J , where J
A
are such left ideals that every non-zero submodule of Ve J

is isomorphic to A/J .

Corollary 3.2. Let A be a semi-Artinian ring. Then
the following assertions hold in the category AMod, :

1) ¢S, *0 it NecS,,, ,

2 § - cg

max

C(Spacv iNE) U410} .

Proof. The assertions i) and ii) follow directly from
the definition of the semi-Artinian ring and the proposition
3.1.

Let A be a commutative entire (i.e. an integral do-
main) and let W = /A be a subset. For any M ¢ DbAMod.b,
we can introduce the following binary relation on the latti-
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ce of submodules of M :
U~ U, ==> u1:u.z and ¢.u1-u.4n u.uz,
for each «c € W  provided that U, , U, € S(M) .
It is an essential routine to show that this relation defi-
nes a purity on , Mod by the definition:
U is the pure submodule of M iff U~ M .
The proofs are similar to those in [5],p.78, and hence

omitted. We shall say that L is W -pure in M and deno-

te it by U c, M . Consequently, L is pure in M
if W = /\ .

Proposition 3.3. Let /A be a non-simple commutative
semi-Artinian Dedekind ring such that AMod. holds the

primary decomposition of torsion modules from Tm ., Then

~
Sawc: S(K v %\gsm[('l'ﬁm A Tmae)¥ (T e " ROV,

where &w denotea the proper class of short exact sequen-

ces in AMod. corresponding to the W -purity, for some
YeAN .

The proof is based on the following useful lemma.
Lemma 3.4. Let /A be a commutative non-simple entire.
Then 'Im-'l' enrd ¥, . =F in AMod iff N isa

seni-Artinian ring.
Proof. Since (T, F) is a torsion theory for , Mod,

it is sufficient to prove that F,, = F . Let m be a
maximal ideal of A and let F 6 F be arbitrary. If

£ e Hom , ( A/‘ﬂ , F) , then the annihilator of
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iwmf,amm (imf)>m + 0 and since «mf ¢ F , we ha-
ve imf = 0 i.e. F © Fhq, regardless if A is

semi-Artinian or not. Hence we can restrict the proof as fol-

lows. Let Frmax c F and let [ be a nonzero ideal dif-
ferent from ,\ ., Then A/I €T c Tpae , 0 A/I pos-

sesses a non-zero socle (by the proposition 2.7 i)), i.e. A
is semi-Artinian since ] was arbitrary. Conversely, let N

be semi-Artinian and let F' e Fopa. + Suppose that F’ &
€ F , then there exists an element x € F’ with
amm (x) =% 0 and N\ . x & A/m(x) € Fw .

By the hypothesis, there is a maximal ideal m such that

A
/m © A/m(x) i.e. A/ﬁ € F,.. and it leads to
the contradiction, q.e.d.
~
Proof of 3.3. Let M € st . Since its maximal ordi-

nary torsion submodule M.,_ is pure, it is consequently

W -pure in M and hence M is not a mixed module. Nouw,
~

suppose that M ¢ T A Sew . Since the primary decompo-

sition for T,,, holds in ,Mod and by the lemma 3.4

M e T,,. , we have the result M e Ty, max , for some p €

€ sm +Let us denote the maximal ordinary divisible sub-
module of . by D . Since A\ is the Dedekind ring, D
is an injective submodule ([2],p.134) and consequently M =
=D @R , where R € R . In other words,
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Me(‘n%)s [(Tﬁ'mnTm)uCT‘mwnm)]).
mar

To finish the proof, let us assume that M 6 F n g;w
and x e M be a nonzero element. By the essentially same
routine as in [5],p.78 we can show that A . x can be im-
bedded in a W -pure submodule of the rank 41 and since e-
very /\ -module from F of the rank 41 can be imbedded
in X

Corollary 3,5. Let A = Z and W c P . Then

A 9 the proof is finished, q.e.d.
~
Gszw = g and

g

zw-{Z(.fa.)lﬂ.cl’iu(Z(@"’)l@eW,4<hém}u

viG(ID)ITecWiu 0}

where W= imeZ Im -‘;T‘Tkp':’: , for n; 6 W eand
K -finite .
Proof. Obviously, S,.. and { Z (p*) | peW ,

l< S < o0 are both contained in SEW .

&« W , then any W -pure subgroup of Z (n®) is divi-

Ifr

sible and since Z (pn®) is indecomposable, it is neces-
sarily a member of g 7 Similarly, any W -pure sub-

group of G (I), I e W , is p -divisible for any £ €
61 ,80 it is of the same type as @ (1) and hence iso-

~

morphic to @ (I) (I5],p.149), i.e. B(I) e SEW .

Conversely, let M e g‘W N Smax - Since every or-
dinary torsion, reduced group has a finite cyclic direct sume
mand ([8]1,p.21), we can use the proposition 3.3 with the re-
sult
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MedBMDIIcPIuiZp™IneP, 1<h €cciu {0 .

If I ¢ W , then obviously G (I nW) ey acr) ,
hence B(I) ¢ gEW and similarly if p ¢ W , then

Zp) ey Z(p") , for 1< o & o .

Now, since every infinite cyclic subgroup can be imbed-
ded in a pure subgroup of the rank 4 ([5J,p.78) and the ma-
ximal ordinary torsion subgroup is pure, too, we have the

result cﬁ:gzw = @ , that immediately follows from the

first part of the proof, g.e.d.
Corollary 3.6. Let A =2Z and W c P . Then any tor-
sion class M = {0} which is closed under taking v -

pure subgroups can be described as follows.

= C @99 * 4+
DMt BNV, B *t

or
>3 = C ( W, 4+
ii)m 51“&5::53(4»)) v QCE)} ’
where £E = W .

A part of the proof is the following useful lemma.

Lemma 3.7. Let (M, &) be a non-trivial torsion theo-
ry for Abelian groups such that M A F %= {0} . Then
DeM anda £ <R .

Proof. Let M e M n F, M+ 0 ., Then by [2],
p.119, Hom (6 ®M,L) »~ Hom (G ,Hom (M,L)) = 0 ,

for YI, ¢ £ . Since the functor @ @ (- ) is exact and

e is injective we have the inclusion
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Hom (B,L)~ Hom (8 @ Z,L) c Hom (GO M,L) = 0

and hence L € R , gq.e.d.
Proof of 3.6. By the lemma 3.7, we can divide our in-

vestigation into the two following cases:

By [3],p.31 Z(p*)e M , for some 1 & ¢ < o implies

that 7  contains all the 4 -groups and hence the equali-
ty

m -(i}i.PZ(@))ui%}

@ x +
Sewng, EPN?

follows directly from the theorem 2.8 and the corollary 3.5.

ii) M AF & 10} .

By the lemma 3.7, 70 contains all the divisible groups and
hence with regard to the same arguments as in i), we can re-
strict our investigation to the case

m = &guusv’dch)) v U, GINIRY
where P’ is a subset of the power set P (W) , Since I1 c
cl, end G(I,)e M implies @, (I, ) e M and sin-
ce by the essentially same argument as in [6],p.112, 0(11)

and B(I,) e M imply G(I, A I,) € M , we can re-
write the original equality as follows:
MaeilV  EZpNDouBO 1I3*T
nelchkh le?

3

If we set E -1('} I, then QCE)/,,-;,Q(E) ,for n & E
€ ’ .

are nongero groups of bounded order and hence it implies that

M contains all the f1 -groups, for £ ¢ E . In other
words, )
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Mai( U Zp)DuB(EI** | where B c W , q.e.d.
-ntJ’eE

Let us introduce several important notations for Abe-
lian groups. If G is an Abelian group, its Ext =comple-
tion is the Abelian group Ext ( G/z , G) which appears
to be a direct summand of a direct product of n -adic inte-
gers provided that G e FA R ([71, p.369). An Abelian

group G is called the cotorsion group if Ext (B . G) =
= 0 , moreover if G « R , then Gebf(a/z,G) .

We shall say that a reduced, ordinary torsion-free and cotor-

sion group G is of the type J c P, if G is a direct

summand of a direct product TT_ A of p -adic integers.
ned)

Of course, the type J is not uniquely determined. The fol-
lowing two propositions appear to be useful tools for an in-
vestigation of torsion theories for Abelian groups.

Proposition 3.8. Let (M , &) be a torsion theory for
Abelian groups such that M. A F & 40% . Then M is clo-
sed under the Ext -completion.

Proof. Since the Ext -completion of divisible groups
is sero, it is sufficient to show that M € M A K  implies
Eat(a/z,M)em ’ Let Me M A R . We have

the exact sequence
Hom (6, M) = 0 — Hom (Z M)~ M— Ext(
— Ext (B,M)—> 0 = Ext (Z, M)

a/z,M.)—»

that yields the equivalence

Hom (Ext (8/7,M),L) & Hom CExt (B, M), L)
for YL e &£ .
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By [5],p.245, Ext (6, M) is divisible and accor-
ding to Lemma 3.7, Hom (Ext ( a’/z\,M),L) = (0 , for

YL e &£, q.e.a.

Proposjtion 3.9. Let (M ,&) be a torsion theory for
Abelian groups such that {A, Inedc Ptc M . Then M

contains every reduced, ordinary torsion-free and cotorsion
group of the type J .

Proof. If J = Q0 there is nothing to prove, so we
will assume that J =% J . First, we will prove that an ar-
bitrary direct product (A«_)I of copies of A, , for n €

& J Dbelongs to 7 , Since (A,ﬂ)t is equipped with the
ring A}, and the height of every x e (A.,,,,)I is finite,

we have for each X € (AF)I the A, -module A_ . x which

ne
is isomorphic to Aﬁ (£51,p.155). Hence we have the nstural
epimorphism

I
9:&131(%,1 Ap.x, — (A,)

s . —_—
(a’-c xd’dl’(_-m ,“f-,‘ T X

which finishes the first part of the proof. Hence any direct
product of . -adic integers A, , n € J can be written
9
n
as the direct product ﬁ'f:l'a Rp , where R, = (A) and

this induced direct product is without repetitions. We have
just shown that such an ﬁgﬁ € M , 80 it is sufficient to
prove that @I‘; Re 6 M provided that D is an infini-
te subset of P .

Sinco“ iu:., ﬂ'@ eMm we have the equivalence

2
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Hm(aqaﬁ@/@%aﬂﬂ"t')sz(nEra‘ﬁﬂ’L) !
for YL € &£ .

It is easy to show that J being infinite implies that

pTch Rn /11 R is divisible and since by the lemma 3.7

gey ™*

&£ € R , the whole proof is finished, q.e.d.
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