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A CHARACTERIZATION OF THE EIGENVALUES OF A COMPLETELY
CONTINUOUS SELFADJOINT OPERATOR

Joachim NAUMANN, Berlin

1. Introduction. In the present paper we give a cha-
racterisation of the eigenvalues of a completely continu-
ous selfadjoint operator which acts in a Hilbert space by
a variational principle. Our arguments are based on the
varient of Ljusternik-Schnirelmann-theory in (4] without
the explicit use of the notion category. This procedure
makes it possible to dispense with the oddness of the ope~
rator and therefore to handle the problem of existence and
bifurcation of nontrivial solutions for nonlinear operator
equations with not necessary odd operators. This has a
great importance in the study of some problems in nonline-
ar- elasticity.

In {2) M.S. Berger has given a similar characterisa-
tion with an explicit use of the category arguments based
omr-a result about the dimension of the critical set of a
fanctional. Our formulations are, roughly speaking, a
"curved” variant with respect to the formulation in [5] and

withr respect to the well-known variational formulation
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(see e.g. [8]) n

. But it is not the aim of the present
paper to give a treatment of some connections between the-
se various fgrmulations.

The advantage of our results and the variational for-
mulations consist in the immediate applicability to bifaur-
cation theory for nonlinear equations of the type A Au =
= Pu. . This will be done in a forthcoming paper about a

generalisation of the bifurcation procedure in [7].

2. &gl;-imgi e8. In this section, we recall some
wellknown facts about the spectral analysis of completely
continuous selfadjoint operators in a Hilbert space and
give some inequalities for the use in the next sections
(see [4)).

Let H be a real Hilbert space with the scalar pro-
duct ( , ) and thenorm Il || . In the whole paper we

suppose that L is 8 completely continyoys selfadjoint
positive operator (i.e. (L, &) >0 for w 4 6 )
which acts in H . It holds ([1]): There exists a finite
or infinite sequence of orthogonal in pairs and normaliszed
eigenvectors
€y @y, 00y Ry ien

which belong to the eigenvalues

.7&1 B'.ﬂ.'a i.... BA, =00
1) Particularly for Courant-Weinstein-characterisation see:
Dunford, N. and Schwarts, J.T.: Linear operators, part II.
New York, London 1963.
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For each « € H the expansion holds
[
(1) L = 55 A'-_ (u.,e’-')e’«_ .

We denote by

* * *
.14 >.7|,2 > ... =AY > ...

the sequence of all distinct eigenvalues of I (each A,’,“,
has a certain finite multiplicity f, , e.g. AJ = A = ...
...E.ﬂ%‘ ) and by E, (m=4,2,.,.) the eigenspaces of
A% . Further we denote by H, (m =1,2,...) the closed
linear hull of all eigenvectors which belong to the eigenva-
lues A% ,..., A% . Clearly H, = E .

Let P, be the projections onto H, anda Pl the
projection onto H © H, , respectively. From (1) follows

o0

4 4
(LB ", ) = i-%ﬂ .‘A.a»_(l’,' u.,eé) (u,e5)

< L 2
= 5.5'_4 .Z,;(P1 a, ei) )
therefore for each w € H

(2) (L uw,u) & AXNEBfwl? .

Let ba w eH©O H, . Ten (u,e )= 0 for all eigen-
vectora e; which belong to the eigenvelues A7, ..., A%
and we obtain

(3) (L, ) €A%, lwl*, weHeH, .

maéq
From this and (1) it follows that

4) (Lu,as) = (LB a,Boa)+ (LB, Br ) s
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4 2
£ AXNB i + A%, IBE L1

P 2 * * 2
L3O VPN LR L L Y § I |

for arbitrary « 6 H . By a similar consideration we ob-
tain

(5) (Lu,u) & MEAB wl?, weH .

3d. The first eigenvalue. For arbitrary but fixed real
R >0 we define

Spmfulwel, Thal® =R} ,
1 2
By = fuwlueH, -illu.ll &R .
The functional

Plw) = -;.-(Lu,u), 4 s H
has 1, as its gradient (in the Fréchet sense) on H

The following result is wellknown, however the proof

is given in a nontraditional way by the aid of an argument
from [3].

Theorem 1. The variational probles
maximize ¢$(u) over B

has for each fixed R > 0 a solution “y = (R) e SR

such that ¢ (u, (R)) = mg.:.w ¢ (u) . There exists a A=
= A(R)e R!  with A 4, = Lu, . Furthermore
(1) ¢ (u, (R)) = A, (RIR for each R > 0 .
(11) For each R > 0 holds A, (R) = A*
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Proof of Theorem 1. The functional ¢ is weakly con-

tinuous on H and after a wellknown theorem of functional
analysis there exists an element My o= b, (R) e BR such

that ¢ (u, (R = max & (u) . Suppose T, (RIE <R,
R

There would exist a real number t > 4 with %l\ u4(R)|lz<

< —;— Iltu.1 (R)I? € R . oOn account of the maximality

of Ay (R) it followa
tﬂ.

2 (L, (R), 4, (R)) = 4)(1:44,4(11)) € ¢(u, (R)) =

1
= 7 (La, (R, s (RD)

a contradiction, since w« (R) % @ . Therefore M (R)e SR

and a trivial consideration shows
$(u, (R)) = mk:x,«cp(u) = "3:"’ $(w) .

After a slight modification of the proof of Theorem 4 in [3]
we obtain the existence of a A, = h1 (R) e R with
ok, = L, . From the last statement it follows simply

$Cut (R)) m £ (Lag, (R), , (RY) m £ 2, (RO lag, (R)N2= 2, (RIR

which proves (i).
Let weE, n $R be arbitrary. We obtain

*
(6) x;xsl‘itnun’- $u) & mar §(u) = A, (RIR .
R

On the other hand, let . € H be arbitrary. With « =
-P,‘u. + P“lu. it follows from (2) that

*
Plw) = -af- (Baw,u) + —1— CLP1‘LM,M) =
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* F ] *
e Ziurts 2 gpta? g 2bgu

Therefore, for arbitrary « e S,
2, (RIR = mgix d(n) = mg:xa Plw) € MR

and together with (6) finally ﬂ.4 (R) = .7\,;" which

I
completes the proof.

4. lemmag. In this section and the next we prepare the
charactsrization of the eigenvalues A,  withm = 2. We
begin with a result about ordinary differential equations in
Hilbert spaces.

Let h e H with I hll=4 be chosen arbitrary, but
fixed. Now let us consider the following initial value pro-
blem

daw (t) (u(t), )
)] -~ =~ h - 2R a(t), U-DGSR .

From [7]1,(9] we obtain

lemmg 1. There exists a real number t, > 0  which de-
pends neither from A, nor from Mfn asuch that

(1) in the interval 0 & t & t, there exists a uni-
que solution . (t) af (7);

(ii) there exists a constant ¢ = c (R) which de-
pends only on R  but neither on &, noron h with

ha(t)-u,l €c(R)t forall 0 & te&t,

(iii) w(t) e SR holds for all 0 & ¢+ & t,

The crucial importance of this lemma is the uniformity
of t, with respect to &, and M . We call the solution of
(T a trajectory on the sphere S; .
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For arbitrary « ¢ S, and 2 € H , we introduce the
following operators

(Lo,
5(4r,u.)=L1r-_V“L)__M’ i = Lit< (L, w) " .
2R 2R

Lemma 2. There exists a constant e, (independently of
R ) such that for all w« , 4, € S, and ¢ B, there
holda

8 V5(wr,u)-0u,l&c (Nuw-uyll+lor-ul.
Proof of Lemma 2. First of all we obtain
I (L, i dar = (Laty, by )N & 2R UL HC2 Nb-apyll + Nwr-wyl) .

Therefore

150w, )= O, | 6 I L= L Vo g 1L ek = Ly a0y sy |

€ e, (-l + lr-u,ll)
withc = 2NLI , q.e.d.
For arbitrary «, € H it holds that

)= dw) = ("Llwrrlu-w), u-wlds .
(]

Let w«(t) be a solution of the initial value problem (7).
For a certain mean value £ (t) € (0,1) it follows

from the last equation
Pl () = Pluy) = (Lluwy+ FCt) () =y )y (t) - wy)

and with the notation g = Ay + §C) (w(t) ~u,) and
after change of integratidn and scalaer product (see [6]) the-
refore

t
(9 ¢ (w (£)) = @ Cug) = (S Cue, (4D, )
(4
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forall 0 £t &t, .

5. Lemmas (continued). Let us consider the space H,

with m & 2 (eee Section 2). Then we define
6(H ) ={uluweH, IR ul>03.

Clearly (S, n H,) e ¢ (H,) . The following two lemmas
are contained in [4) (see (4] for definitions, too).

Lemma 3. The set S; N H,  is noncontractible in
6(H,) .

Lemma 4. Let ;’{ be a proper subspace of H, . If for
aeset VcH it holda that P,V A H =w then it
follows that V ¢ @ (H,) and V is contractible in
OCH,) -

Proof of Lemma 4. Suppose there would exist u € V with
Fou = 8 , T™en 8§ e F,V and therefore GerVnﬁ
which contradicts our assumption. The proof of the second
part of lLemma 4 corresponds to the proof of Lemma 2.7 of (4],
p.331, q.e.d.

Our next lemma provides an explicit condition for the be-

longing of an element w e H to & (H,) .
Lemma 5. Let 0 @ d< A} - A%, . Ifd(w)2
E (A% -0)R for u € S; then

LY L
aF - At "

m 41

Proof of Lemma 5. Suppose the contrary holds. Then we ob-
tain with aid of (4)

1B, a I* = 2R

* A _ gk
Dlu) = %(Lu,u.) = %—ﬂ ll,u'lla-i--'?L"—éﬂ—'’-’1-“'--"--'lleu.l2 <
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AL - AEL S

LW 2
< —%—-Ilu" +x<a;"-n*

)

4
n ﬂ:-ﬂ;*,,
=X R+ (AX-A%, - dIR = (A4 - IR .

This contradiction proves the assertion of the lemma.
Corollary 1. For 0 & J < A}, - A%, it holds
that

fuluesS,, dw)z (Ay - )R1 c €CH,) .

6. The eigenvalues J\.’”"v with m = 2 ., In this section

we proceed to the characterization of the eigenvalues .ﬂ:,,
with m & 2 .

Definition. [VJH” denotes the class of all compact
subsets V ¢ SR which lie in & (H, ) and which are non-
contractible in 6 (H,) .

Conaequently [VJH,,, contains with a set ¥ all sets

which are the result of V' by a continuous deformation, re-

maining in Sp . Lemma 3 provides (S nH,)e IZV'.'IH .
m

Now we formulate the following variational problem
(%) e, = (R) 7 ¢ ¢
m = Cp = Wm nf ¢ (w)
Obviously it holds

(10) L * .

en(R) = sﬂ%cp(u) = AZ R
It is the aim of our following considerations to show that
in the last inequality the equal sign must hold always ,

which provides the desired characterization by the variatio-
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nal problem (x ).

For ¢ > 0 we introduce

W,=fuluweS, o -c,(R) £t .

We prove now

lemma 6. For each € >0 there exists a « € Wy with
lGwl < & .

Proof of lemma 6. Suppose the contrary holds, i.e. it
holds that  Qu Il = ¢, for a certain €, > (0 and all

s € W‘O .
Let u, & W‘o be arbitrarily chosen. There exists a

ho=d,, with Lhl=1 ama (Gu,, h)Z 5 10a, 0 .

Further, let . (t) be the unique solution of the initial
value problem (7) in the interval 0 & t £ t, with the
initial value &, and A& = h'“'o (see Lemma 1). Now we take

—%
8¢, c(R) ’

t4 = m{to,

From Lemma 1 (ii) it follows

€o
lu(t)-.u.ollé-a—c;- forallOétét,,
and from this
€
| - 2 for all ]
,ws u, | £ Bc, or a 0é~bé~t1
' 1
Moreover, it holds that llu Il £ (2R) 2 and (8) provi-

§
des for all 0 & » & t1 the estimation
15 Cug,u(r))-0u,l & --e-q_—"- .

We obtain
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(5Cu, , (6N, ) 2 %lauoﬂ— I(S(u‘,u(m))-auo,h)l

€ €o 0k o &t .

Lo | 20 _
22 "% el 1

From (9) it follows therefore
t, y
(11) ¢t~ Plu,) = J;(S(w,u(b)),h)d.b Z L&t .

This estimation holds uniformly for all 4, € WE, .
Ve take ¢, = M(% Eoty, €, ) . For this g

there exists a V; € [V], such that min ¢ (w) 2
1 m (P
£ c, (R) - g,

Now we consider the decomposition
Ve fuluey (R) > ¢ ) ¢ 3
£, e E,,acm + & dw) z ey R)-¢,¢,

Vol =dulueV , 0w) & cu(R) + 6, 3

Obviously V51 = ,_:” v Ve‘:') . Let w e Vs:” ,i.e.
l¢w)-cp(R)I & €, . Since g, & €, , it follows

that & & W, . Then we obtain from (11) (take w =4, =w(0))

1
a2 dlu(t)) & ¢(w) + % gty = d(w) + 2¢,

zZc¢, (R) + €,
Now we displace the element w € Vg(:) along the tra-
jectory w (t) with an initial point w=wx, = 4 (0) and
A = S, uptoaspoint w(t) with dp(u(t)) B c,(R)+

+ €, . The inequality (12) shows that this is always possible.
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Therefore it is possible to displace the whole set VE‘:)
continuously. The length of the displacement of a u € VE:"
tends to sero, if (c, (R) + € ~P(w))'—> 0+ . The
points in V,:” remain fixed.

We denote the set which is displaced in such a way by
~ ~ ~
V£1 » Obviously Vy < Sy (see Lemma 1 (iii)) and Ve,
is the result of a continuous deformation of V51 . Since

»

*(Z) Z e, (R)+6 EALR + ¢, for all

~ -~ 2
i e Ve, it follows from Corollary 1 that Ve, c 6 (H,).
After the supposition Vg P is noncontractible in & (H,)
and since -‘7‘1 ia the result of a continuous deformation,
it follows that 7“‘ is noncontractible in 6 (} ) , There-

~
fore V; € [V], and

1 m

en(R) = sup inf dw) 2 nf o) 2 cn(R)+ ¢ .
vy, v %, 1

This contradiction completes the proof.
The next theorem presents our main result.

Theorem 2. For each natural integer m = 2 it holds:
(i) The variational problem.

(x) Cn = Ch(R) = Aup inf P (w)
CVJ"M‘ 4

has o solution 4, (R) € Sy  for each R > 0 such that
Plup (RN= ¢, (R) = ¢, .
(ii) There exists a real number A, (R) with
Ap(R)u, (R) = L, (R) .
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(1ii) It holds 2, (R) = A%  for all R >0 .
Corollary 2. For each R > 0 there holds en (R) =
- A% R .

Proof of Corollary 2. From Theosem 2 (ii) it follows
that
¢ (i (RY) = 12 (Laty (R), st (RD) = -42- Ap (R Lty CRONE

and since w«,(R) e SR we obtain with (i) and (iii)
Cp = ¢ (R) = ¢(upy (RN = A% R, q.e.d.

Proof of Theorem 2 (i) and (ji). We choose a sequence

fez} of real numbers with ¢; —> 0 for 4 —> oo . From

Lemma 6 we can conclude the existence of a sequence {u"_mi 3
3 W,_a. with |l Q“’a’,m« | & €; (in the whole proof we denote

“sm (R) simply by M, m ) Without loss of generality

we can assume that u.?.n——b ‘. (weak convergence). Since
L)

¢  is weakly continuous, it follows that ¢ (u,) = ¢, .
Suppose now 4, is sufficiently large such that 0 <
<e¢; S IR forallj & 4, ,vwhile d is chosen as in
Lemma 5. We obtain for 4 = 3,
dluyn) B e, (R)-g; 2 (A - )R

and from the inequality (5) and Lemma 5 it follows that
1

¢ (w’-,”) = ‘I LL“"’”“,

A A -
R # = 4o
m ‘a‘: - nn ’

maq

A%

The tending of 4 —> oo provides
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(13) (L yi0p) > 0
We define

a"1'-,»1. - 'a‘i,m. 2R i m

yirym )

Again we can assume without loss of generality that ao-m-»

—> .z,m . A simple argument which makes use of (13) shows that
JLn> 0 . Therefore without loss of generality

4

a .

m

4
Lu’_,%———> —.ﬂ.: Lu,

Now suppose that for j & j, there holds A TR

z7 A, . We obtain for 3 = 3,

1
““’3’”"— —.i:—me'” '3
2
S A -—- 0
< o 6wy, “+I|.7L,,.n Lug m A I.,u«,.,l“?_“‘g

and from this follows

“U.?"” - Ay, Hz = (u

2
aom > Megm) =2y i) + a7~

—*4—-(LM. AL )-J—(Lum,un)—(um,uw)+ﬂu.m_ﬂz =0 .

n“ miITm ‘1”
We conclude Asm —> A&, (atrong convergence) and fur-
thermore
H'M« € SR and Ly = —.ﬂ_,; LM'NL ’ q.e.d.

Proof of Theorem 2 (iji). E,  is a proper subspace

of H .By Lemma 4 for each V e LVJH“ there must exist
a4 eV with B, e E,, . PFrom (3) it follows that
o) = LBz, pm + FLBta, BE 2

- _||p aits+ —(LP”;'-E,P,;LAI) =

- 76 -



A% - A% —
€SP NRalt + =P NIRRT £ ALR .

Therefore

min & (u) £ $(7) & AHR

and since YV ¢ [VJH” was arbitrary,

Cm = Cn(R) = pup nf ¢ (u) €« AR .

iy,

In consequence

An (RIR = £ 2 (RY ity (RIIP = (Litey (R, aty (RD)

= ¢u, (R)) = c, (R) € AXR .

We combine this with the inequality (10), and the proof is

complete.
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