

Werk

Label: Article
Jahr: 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log9

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 12,1 (1971)

CONCERNING ALMOST DIVISIBLE TORSION FREE ABELIAN GROUPS
Ladislav PROCHÁZKA, Praha

A torsion free group G (all groups here are supposed to be abelian) will be called almost divisible if the set of all positive primes μ with $\mu G \neq G$ is finite. In this note we shall give some conditions that are necessary and sufficient for an almost divisible group G to be completely decomposable. In the paper [2] of D.K. Harrison (see Proposition 5.2) such necessary and sufficient conditions are formulated for the groups of finite rank. But it was shown later (see [3]) that these conditions are not sufficient in general. However, the remark following Theorem 2 shows that the Harrison's conditions are sufficient whenever the corresponding type set is linearly ordered.

If G is a torsion free group, then $\mathcal{I}(G)$ will denote the type set of all non zero elements in G; G is said to be homogeneous of the type \mathcal{M} if $\mathcal{I}(G)$ consists of one element \mathcal{M} only. For a type \mathcal{M} and a prime \mathcal{P} the relation $\mathcal{M}(\mathcal{P}) = \mathcal{O}$ means that in any height belonging to \mathcal{M} the \mathcal{P} -height is \mathcal{O} ; the symbols $G(\mathcal{M})$, $G^*(\mathcal{M})$ and $G^{**}(\mathcal{M})$ represent the subgroups of G defined in

AMS, Primary 20K20

Ref.Z. 2.722.1

[1,§42]. The rank of a group G is denoted by $\kappa(G)$ and $\kappa_{n}(G)$ stands for its n -rank (see [5]). But in this note we shall use the relation $\kappa_{n}(G) = 0$ only; this last relation says that for any finite set $M \subseteq G$ the n -primary component of the torsion group $\{M\}_{n}/\{M\}$ is reduced $\{\{M\}_{n}\}$ denotes here the least pure subgroup of G containing M).

First of all we shall prove the following helpful assertion.

Lemma. Let G be an almost divisible torsion free group and let, for a type $\mathscr{M} \in \mathscr{Z}(G)$, the following conditions be fulfilled:

- (b) for any prime p the inequality $w(p) \neq \infty$ implies

$$n_{p}(G(w)/G^{*}(w)) = 0$$
.

Then the group $G^*(\mathcal{M})$ is a direct summand of $G(\mathcal{M})$, $G(\mathcal{M}) = G_{\mathcal{M}} + G^*(\mathcal{M})$, where $G_{\mathcal{M}}$ is completely decomposable and homogeneous of the type \mathcal{M} , or $G_{\mathcal{M}} = 0$.

Proof. If $G^*(w) = G(w)$, then $G_w = 0$, therefore we may suppose that $G^*(w) \neq G(w)$. The group G(w) as a pure subgroup of G is likewise almost divisible and so is the factor group $\overline{G} = G(w)/G^*(w)$ as well. In view of (a), the group \overline{G} is torsion free and the type of any of its non zero elements is $\geq w$. Thus, if p is a prime with p and p and p and p are p and p and p are p are p and p are p and p are p and p are p and p are p are p are p and p are p are p are p and p are p are p and p are p and p are p and p are p are p and p are p are p and p are p and p are p and p are p are p and p are p are p and p are p and p are p and p are p are p and p are p are p and p are p and p are p and p are p are p and p are p are p and p are p are p are p and p are p and p are p and p are p and p are p are p and p are p are p are p are p and p are p and p are p are p and p are p and p are p and p are p a

of zero p-rank (see [4,Corollary 2]), therefore each non zero element of \overline{G} has a finite p-height in \overline{G} (see [6,Lemma 6.1]). Now we deduce from the finiteness of the set of all primes p with $w(p) \neq \infty$ that \overline{G} is homogeneous of the type w. Thus the inequality p $\overline{G} \neq \overline{G}$ implies $w(p) \neq \infty$ and therefore $n_p(\overline{G}) = 0$. By (a), \overline{G} belongs to some Baer's class \overline{G} and in view of [4,Corollary 4] \overline{G} is completely decomposable. Evidently, m is the type of any element $q \in G(m) = G^*(m)$, hence, according to the Baer's lemma [1,the note following Theorem 46.5] $G^*(m)$ is a direct summand in G(m). Thus we have $G(m) = G_m + G^*(m)$, $G_m \cong G(m)/G^*(m) = \overline{G}$, therefore G_m is completely decomposable and homogeneous of the type m.

Now we are in a position to prove a theorem concerning almost divisible groups with the linearly ordered type set (in natural order of the types).

Theorem 1. Let G be an almost divisible torsion free group with the linearly ordered type set $\mathcal{F}(G)$. Then G is completely decomposable if and only if for any $\mathcal{M} \in \mathcal{F}(G)$ the condition (a) together with the condition

(b*) $\kappa_{p}(G/G^{*}(w))=0$ whenever $\kappa(p)\neq\infty$ are fulfilled.

<u>Proof.</u> If G is completely decomposable and $G = \sum_{i \in I} J_i$ is a complete decomposition of G, then $\mathcal{L}(G)$ coincides also with the set of the types of all rank one groups J_i ($i \in I$). Thus for any $w \in \mathcal{L}(G)$ the torsion free group $G(w)/G^*(w)$ is completely decomposable and homogeneous of the type w; evidently, $G(w)/G^*(w) \in I$

e Γ_{∞} (1 \leq \alpha \leq 2). The group $G / G^*(m)$ is completely decomposable as well and the types of its direct summands are $\leq m$. Hence, if $m(p) \neq \infty$, then $G/G^*(m)$ is p-reduced and in view of [4,Corollary 1] we have $n_p(G/G^*(m)) = 0$. Thus in this case the conditions (a),(b*) are fulfilled.

Now, let us suppose that G satisfies (a) and (b*); we shall show that G is completely decomposable. From the hypothesis it follows immediately that $\mathcal{V}(G)$ is finite. Let us put $\mathcal{V}(G) = \{ m_1 < \ldots < m_m \}$. Then we shall prove the complete decomposability of G by induction on $m = card \mathcal{V}(G)$.

For m=1 the group G is homogeneous of the type w_1 and $G^*(w_1)=0$. Then the inequality $nG \neq G$ for a prime n implies $w_1(n) \neq \infty$ and in view of (b^*) we have $0=n_n(G/G^*(w_1))=n_n(G)$. Hence, by [4, Corollary 4], G is completely decomposable.

Thus, suppose $m \ge 2$ and let our assertion hold whenever the cardinality of the corresponding type set is m-1. Since $G(w_1)=G$, we can apply our Lemma to G for $M=M_1$ and we get

$$G = H + G^*(w_1),$$

where the group H is completely decomposable. If we put $G^*(\mathfrak{M}_4)=G_4=G(\mathfrak{M}_2)$, then by (1) G_4 is also almost divisible and $\mathcal{L}(G_4)=\{\mathfrak{M}_2<\ldots<\mathfrak{M}_m\}$. We shall now verify that G_4 fulfils (a) and (b*) for all types of $\mathcal{L}(G_4)$. In fact, if $\mathfrak{M}\in\mathcal{L}(G_4)$, then $\mathfrak{M}_4<\mathfrak{M}_2\leq\mathfrak{M}$ and hence $G(\mathfrak{M})\subseteq G(\mathfrak{M}_2)=G_4$, which implies

 $G_{4}(\mathcal{M})=G(\mathcal{M})$; analogously, we obtain $G^{*}(\mathcal{M})\subseteq G^{*}(\mathcal{M})=G^{*}(\mathcal{M})$; therefore $G^{*}(\mathcal{M})=G^{*}(\mathcal{M})$. Thus we have $G_{4}(\mathcal{M})/G_{4}^{*}(\mathcal{M})=G(\mathcal{M})/G^{*}(\mathcal{M})$, which means that G_{4} fulfils (a) for each $\mathcal{M}\in\mathcal{F}(G_{4})$. By (1), we can write for any $\mathcal{M}\in\mathcal{F}(G_{4})$

(2)
$$G/G^*(w) = (H + G_1)/G^*(w) \cong H + G_1/G^*(w) = H + G_1/G_1^*(w)$$
;

thus for $m(n) \neq \infty$ it is $n_n(G/G^*(m)) = 0$ and hence by (2)

$$\kappa_{n} (H + G_{1} / G_{1}^{*} (w)) = 0$$
.

Following [4,Corollary 2], we get $\kappa_{1}(G_1/G_1^*(w)) = 0$, therefore the condition (b*) is satisfied by G_1 . Under the inductive hypothesis G_1 and in view of (1) G is completely decomposable as well. Thus the proof of our theorem is finished.

If the group G is torsion free of finite rank and H any of its pure subgroups, then $\kappa_{\mu}(G) = \kappa_{\mu}(H) + \kappa_{\mu}(G/H)$ for every prime μ (see [6,Theorem 6]). In particular, we obtain that $\kappa_{\mu}(G) = 0$ implies $\kappa_{\mu}(G/H) = 0$ for each pure subgroup H of G. We shall use this last fact in the proof of the following theorem. Let us recall that if G is torsion free and μ any prime, then $G[\mu^{\infty}]$ will denote the greatest μ -divisible subgroup of G. Evidently, $\kappa_{\mu}(G[\mu^{\infty}]) = \kappa(G[\mu^{\infty}])$ (see [5,Theorem 1]).

Theorem 2. Let G be an almost divisible torsion free group of finite rank with the linearly ordered type set $\mathcal{I}(G)$. Then G is completely decomposable if and only if $\kappa_n(G) = \kappa(G[n^{\infty}])$ for every prime n.

<u>Proof.</u> If G is completely decomposable, then for any prime n, $G = G[n^{\infty}] + G_1$ where G_1 is also completely decomposable and n -reduced. Then, by [4,Corollary 1] $\kappa_n(G_1) = 0$. Since $\kappa_n(G) = \kappa_n(G[n^{\infty}]) + \kappa_n(G_1)$ (see [6,Theorem 6]), we get $\kappa_n(G) = \kappa_n(G[n^{\infty}]) = \kappa(G[n^{\infty}])$.

To prove the converse consider $\kappa_n(G) = \kappa(G[n^{\infty}])$ for all primes p. For the proof of complete decomposability of G it suffices to show that G fulfils (b*) only, (a) being trivial. Let $\mathcal{Z}(G) = \{u_1 < ... < u_n\}$, take $w \in \mathcal{X}(G)$ and suppose $w(p) \neq \infty$ for some prime p. In order to prove the relation $\kappa_n(G/G^*(\kappa)) = 0$ we shall distinguish two cases: $G[n^{\infty}] = 0$ and $G[n^{\infty}] \neq 0$. If $G[p^{\infty}] = 0$, then $\kappa_n(G) = \kappa_n(G[p^{\infty}]) = 0$ and in view of the preceding remark we have $\kappa_n (G/G^*(x)) = 0$. If $G[n^{\infty}] \neq 0$, then there exists an integer $j \leq m$ with $w_{\pm}(p) = \infty$, since $w_{1} \leq w$ and $w(p) \neq \infty$, it is certainly 1 < i. Let i denote the smallest integer with $w_*(n) = \infty$; we shall show that $G[n^{\infty}] = G(w_*)$. The relation $w_i(p) = \infty$ implies the inclusion $G(w_i) \subseteq$ $\subseteq G[p^{\infty}]$. But if $0 + q \in G[p^{\infty}]$ and m = type(q), then $\omega_{i}(p) = \infty$, therefore $i \leq k$. Hence we conclude $w_i \leq w_k$ and $g \in G(w_i)$.

Thus we have shown that $G[n^{\infty}] = G(n_i)$ and also $G[n^{\infty}] = G^*(n_{i-1})$ ($2 \le i$). By [6, Theorem 6] we have $\kappa_n(G) = \kappa_n(G[n^{\infty}]) + \kappa_n(G/G[n^{\infty}]) ;$

since $\kappa_n(G[n^{\infty}]) = \kappa(G[n^{\infty}]) = \kappa_n(G)$, we get

(3) $0 = \kappa_{p}(G/G[p^{\infty}]) = \kappa_{p}(G/G^{*}(w_{i-1}))$.

From $u(n) \neq \infty$ it follows $u \leq u_{i-1}$ and hence $G^*(u_{i-1}) \subseteq G^*(u)$. Thus we have

 $G/G^*(w) \cong (G/G^*(w_{i-1}))/(G^*(w)/G^*(w_{i-1}))$ and by (3) $n_n(G/G^*(w)) = 0$. This means that G fulfils (b*) and Theorem 2 is proved.

Remark. The preceding theorem may be likewise formulated in the following way (see [2, Proposition 5.2]; for the definition of the regularity of a group see also [2, \S 5]): Let G be an almost divisible torsion free group of finite rank with the linearly ordered type set $\mathscr{Z}(G)$. Then the group G is completely decomposable if and only if it is regular.

Till now we have considered groups with the linearly ordered type set $\mathcal{Z}(G)$ only. In order to investigate the general case we shall use [1, Theorem 48.6]. Thus we get the following assertion:

Theorem 3. An almost divisible torsion free group G is completely decomposable if and only if the conditions (a),(b) and

(c) $G^*(w) = G(w) \cap G^{**}(w)$ are fulfilled for each type on $\mathcal{I}(G)$.

Proof. Firstly, assume that G is completely decomposable and that $G = \sum_{\lambda \in A} J_{\lambda}$ is one of its complete decompositions. Denote by T(G) the set of all types of the groups $J_{\lambda}(\lambda \in A)$; evidently, $T(G) \subseteq \mathcal{I}(G)$. For $w \in T(G)$ let A_{w} denote the direct sum of all groups J_{λ} of the type w; certainly, it is $G(w)/G^{*}(w) \cong A_{w}$. If $w(\mu) \neq \infty$, then A_{w} is a μ -reduced completely

decomposable group and in view of [4,Corollary 1] $0 = \kappa_{p}(A_{xx}) = \kappa_{p}(G(xx)/G^{*}(xx))$. Thus for $x \in T(G)$ the conditions (a) and (b) are fulfilled. But if $x \in \mathcal{I}(G)$: T(G), then $G(xx) = G^{*}(xx)$ and the conditions (a), (b) are trivial. The condition (c) follows from [1,Theorem 48.6].

Further, suppose that G fulfila the conditions (a), (b),(c), and prove that G is completely decomposable. If $\mathcal{X} \in \mathcal{X}(G)$, then by Lemma there exists a direct decomposition of the form $G(\mathcal{X}) = G_{\mathcal{X}} + G^*(\mathcal{X})$ where the group $G_{\mathcal{X}}$ is completely decomposable and homogeneous of the type \mathcal{X} . Now, the proof proceeds in the same way as that of sufficiency in [1, Theorem 48.6]. Thus, firstly, it may be shown that the subgroups $G_{\mathcal{X}}$ ($\mathcal{X} \in \mathcal{X}(G)$) generate their direct sum $\sum_{\mathcal{X}} G_{\mathcal{X}}$, and then we should get $G = \sum_{\mathcal{X}} G_{\mathcal{X}}$. The last relation is proved in [1, Theorem 48.6] under the assumption that $\mathcal{X}(G)$ satisfies the maximum condition, but in our case $\mathcal{X}(G)$ is finite, G being almost divisible. Since each $G_{\mathcal{X}}$ is completely decomposable, so is the group $G = \sum_{\mathcal{X}} G_{\mathcal{X}}$ as well, which finishes the proof of the theorem.

References

- [1] L. FUCHS: Abelian groups. Budapest,1958.
- [2] D.K. HARRISON: Infinite abelian groups and homological methods. Ann.of Math.69,2(1959),366-391.
- [3] D.K. HARRISON: Correction to "Infinite abelian groups and homological methods", Ann. of Math. 71(1960), 197.

- [4] L. PROCHÁZKA: A note on completely decomposable torsion free abelian groups. Comment.Math.Univ.

 Carolinae 10(1969),141-161.
- [5] L. PROCHÁZKA: Bemerkung über den p-Rang torsionsfreier abelscher Gruppen unendlichen Ranges, Czechoslovak Math.J.13(1963),1-23.
- [6] L. PROCHÁZKA: O p-range abelevych grupp bez kručenija konečnogo ranga. Czechoslovak Math.J.12 (1962),3-43.

Matematicko-fyzikální fakulta Karlova universita Praha 8,Sokolovská 83 Československo

(Oblatum 7.10.1970)

e.

•