

Werk

Label: Article **Jahr:** 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012 | log8

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 12,1 (1971)

EVERY GROUP IS A MAXIMAL SUBGROUP OF THE SEMIGROUP OF RELATIONS

Jaroslav NEŠETŘIL, Praha

The aim of this note is to extend a result of [2], namely to prove the following theorem:

Theorem: The class of maximal subgroups of semigroups of binary relations includes all groups.

This generalizes [2], Theorem 4.7 to infinite groups.x)
We preserve the notation of [2] and refer to the results
proved there, too.

Concerning graphs we use the notation of [1].

<u>Proof of the theorem</u>: Let G be an infinite group (the proof for finite case would be similar; since the finite case is solved in [2], we make this assumption for sake of brevity). By [1], there is a graph (X, \mathbb{R}) such that $C(X, \mathbb{R}) \simeq G$, where $C(X, \mathbb{R})$ is the monoid of all compatible mappings (i.e. homomorphisms) into itself. By constructions given in [1], we can assume the following about the graph (X, \mathbb{R}) :

x) Using a different method this generalization was obtained independently by A.H. Clifford, R.J. Plemmons and B.M. Schein.

AMS, Primary 20M20,08A05

- a) |X| = |R| (this follows from the fact that (X, R) can be chosen without isolated points).
- b) Let $V(x) = \{y \mid (x, y) \in \mathbb{R}^{\frac{1}{2}}, \text{ then } x \neq y \text{ implies } V(x) \neq V(y) \text{ and } V(y) \neq V(x).$ Similarly for $\overline{V}(x) = \{y \mid (y, x) \in \mathbb{R}^{\frac{1}{2}}.$
- c) $V(x) \neq \emptyset$, V(x) + X for every $x \in X$. Similarly for $\widetilde{V}(x)$.

Let $\varphi: X \longrightarrow \mathbb{R}$ be a bijection. Define the relation ∞ on $X_{04} = X \times \{0, 1\}$ (0,1 \oplus X) by:

 $((x,0),(y,0)) \in \alpha \iff ((x,1),(y,1)) \in \alpha \iff x = y,$ $((x,0),(y,1)) \in \alpha \iff x \text{ is incident with } g(y),$ $((x,1),(y,0)) \notin \alpha.$

By b),c), ∞ is reduced. Further, ∞ is idempotent as can be easily seen. Thus by Lemma 3.4 [2] (and by its remark), the maximal subgroup H_{∞} of \mathcal{B}_{χ} containing ∞ is given by $H_{\infty} \simeq G_{\infty} = \{ \varphi \in S_{\chi_{04}} \mid \exists \mathscr{G} \in S_{\chi_{04}} \propto \varphi = \mathscr{G} \propto \}$. But in this special case we have $G_{\infty} = \{ \varphi \mid \alpha, \varphi = \varphi \propto \}$. Similarly as in the proof of [2], Lemma 4.2, $G_{\infty} \simeq \{ \varphi \in \mathcal{S}_{\chi} \mid \exists \mathscr{G} \in$

I thank to Z. Hedrlin, who turned my attention to the paper [2].

References

[1] Z. HEDRLÍN and A. PULTR: Symmetric relations (undirac-

ted graphs) with given semigroups, Monatsh.für Math.69(1965),318-322.

[2] J.S. MONTAGUE and R.J. PLEMMONS: Maximal subgroups of the semigroups of relations. J.of Algebra 13(1969),575-587.

Matematicko-fyzikální fakulta Karlova universita Praha 8, Sekolovská 83 Československo

(Oblatum 23.9.1970)

.