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EVERY GROUP IS A MAXIMAL SUBGROUP OF THE SEMIGROUP OF
RELATIONS

Jaroslav NESETRIL, Praha

The aim of this note is to extend a result of [2], na- .
mely to prove the following theorem:

Theorem: The class of maximal subgroups of semigroups
of binary relations includes all groups.

This generalizes [2], Theerem 4.7 to infinite groups.X’ .
We preserve the notation of [2] and refer to the results
proved there, too.

Concerning graphs we use the notation of [11.

Proof of the theorem: Let G be an infinite group (the
proof for finite case would be similar; since the finite ca-
se is solved in [2], we make this assumption for sake ef bre-
vity). By [1], there is a graph (X, R) auch that
C(X,R) = G, where C(X,R) is the monoid ef all
cempatible mappings (i.e. homomorphisms) inte itself. By cen-
structiens given in [1], we can assume the following abeut
the graph  ( X, R) :

x) Using a different method this generalization was obtained
independently by A.H. Clifford, R.J. Plemmons and B.M. Schein,
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a) |1X| = |R|l (this follews from the fact that
(X ,R) cen be chosen without isolated points).

b) Let V(x) = {4 |(x,4) € R § , then x %
* oy implies V(x) €% V(g) eand Viyg) § V(x).
Similarly for V(x) = {4 | (4,x) 6 R }

c) Vix) = #, Vix) = X for every x € X .
Similarly for V(x) .

Let ¢: X — R be a bijection. Define the re-
lation &« on X, =X x €0,1} (0,1 ¢ X ) by:

(Ux,0),(y,0)) 6 = ((x,1),(4,1))6 xémd X = %,
((x,0),(4y, 1)) €x¢=> x is incident with @ (%) ,
Wx, 1) ,(y,00) ¢

By b),c), o¢c is reduced. Further, oC is idempotent as
can be easily seen. Thus by Lemma 3.4 [2] (and by its re-
mark), the maximal subgroup ,H“ of .Bx containing oc is
givenby H = G ={pe qulad’c SXM“ @ =G }
But in this special case we have G" = {plap = po :
Similarly as in the proof of { 2], Lemma 4.2,
G‘z{@e.sxl’SG'e Sy , Rp = R} = G, .
But obviously Gy = A(X,R)=C(X,R) == G , by the as-
sumption ( A(X,R) ia the group ef all automerphisms of
the graph (X, R) ). ,

I thank to Z. Hedrlin, who turned my attenfion to the
paper [2].
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