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ON NORMS AND SUBSETS OF LINEAR SPACES

Josef DANES, Praha

J. Zemének has given [10] an example of a non-empty
finitely open and. nowhere dense convex subset of a normed
linear space. Some general theorems 4conceming the exist-
ence of comparable non-equivalent norms in infinite-dimen-
sional spaces give a possibility to construct simpler ex-
amples of that type (see Proposition 1 an& Examples 1 - 3
below).

Throughout this paper, X denotes a real linear space.
Let_.G be a subset of X . G is said to be: (1) finitely
open (see [6), Definition 1.10.2) if each finite-dimensio-
nal affine subspace I, of X intersecta G in a set open
in L (in the unique linear topology on L ), (2) linear-
ly bounded if its intersection with any line is bounded
(as a subset of the line). The convex hull of G is deno-
ted by comwr G ; diam, G denates the disn;e.t;r of G in
(X,0: 1), where I+l is @ norm on X, "——>" deno-
tes. the convergence in the "topology given by l-l. G is
said to be I+ I-P it G is P in (X,N-0) where P is
a property of subsets of X (we shall use P = weak, boun-

ded, open). G ' is a convex body if it is convex and has a
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non-empty interior in (X, l-H).

We begin with

Proposition 1. Let Il-l, and Il 04 be two non-equi-
valent norms on a linear space X such that I-l, &
eXl- l,1 (for some K > 0 ). Then C={xeX: ll.xl1< 11
is a finitely open nowhere dense absolutely convex (non-
empty) subset of (X, K- ll;).Clearly, X must be infini-
te-dimensional.

Proof. Clearly, (C is absolutely convex and non-empty.
Since C is open in (X, W+l ) it is finitely open. Let
C, denote the closure of C in (X, l:ll;) . For each y €
€ C, there is Xy € C such that l"t'-"g— I, < 1. Then

Iy, g lg-x Iy +lx 1, &ly-x [, +Kix I <1+X.
Hence C,c (K+41) C . Suppose that C, has a non-empty
interior in (X,ll«l,) . Then the absolute convexity of (,
implies the existence of some M > 0 such that fx e X:

: |lxll° < &1 c (, . This and C, c (K+1)C imply
that I, & e XN I hy a contradiction to the
non-equivalence of both norms.

Proposition 2. Let L+ll, and |- ll1 be two norms on
o 2 X Il (X=>0) .
Define Nl = (41-t)l-H,+t U1, for 0 =t €41 .
Then 1° h-d, ,te 0,11 are the norns on X , 2°l'lt1£
< K(t,,t,) 1. “tz for 0« t &t £1, whereK(t,t,)=
= Lt +K U=t D+ K-, 3% 0o 1y £ ¢, 47000,
for 0 <t &t < 1 , and hence the norms |- Iy, end l'l,,a

a linear space X such that -/l

are equivalent, 4° if the norms . lo and |l « I1 are non-
equivalent, then l'lo and I-I*, t ¢ (0,11 , are non-
equiveient.
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The proof goes by a direct computation.

Proposition 2 says that two comparable norms can be
Jjoined by a "continuum" of pairwise equivalent norms.

The following two theorems were first proved in our
thesis [3] and published without proof in [4].

Theorem 1. Let (X, N1.1) be a normed linear space
such that its dual space X* is separable. Then there ex-
ists a norm ll-ll,, on X such that the |+ -weak topo-
logy and the ﬂ'llw.-topology coincide on the [ +|l-bounded
subsets of X, eand Il-l, & el ., If X has an infinite
dimension, then the norms -l ,, and l+ll are non-equi-
valent.

Proof. Let fu,3 be a dense sequence in the unit ball
of X* and lxll,, = %::1 2"'"!4.(.“(;&)\ for x in X , It is
easy to see that l-ll,, is a norm and .0, & .1 . Let
M be a I-ll-bounded subset of X, X, a point of M .If
¥ is a weak neighbourhood of X, in M then there exist

e>0 end £ ,...,f & X*, I£;1=4 (3=4,.,m) such

™
that Wo={xeM:lf (x-x)l< e for 4 =4,...,micW.
Clearly, W, is a weak neighbourhood of X, in M . Without

loss of generality we may suppose that M contains at least

two points. There are integers m.1

Niomy- 31 < € Chrdiamy M)-"  for fed,...,m . Let
Ned+macimg,ee,m, ? and VaixeM: llx-x,1, <¢€ 2-"3.
We shall show that W, OV . Let x € V. Then

I |Gt = £3) (x4 25 (%=1 € U=, U < € 276 5 277F
for jw4,...,m . Since [(um,-£ ) (X-K,)I élw%-fdlb(-x‘,“<ﬁ/4,
there is I, (x-x,) < -g: +Z <€ for jmd,..,om . Hence

XCW., and V e W1 c W. Conversely, let V={xe M :

ye0eq M, Buch that
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: II.x-.xa l,<€3(e>0) bea 1. Iv-neighbourbood of X,

in M . A direct calculation shows that V¥ contains W =

w{xeM: Z::‘ 2-0'“0'&(“'“0”‘ e/2 § where »m is so lar-
o -ned . 5

ge that E 2 diam M < € ., Clearly, W is a

o) -weak neighbourhood of X, in M .Suppose that X is

nfinite-dimensional and the norms |- ﬂ” and -l are equi-

valent. Let us denote X*= (X, l-1) and B=ixeX:lxl & 415.

Then

(B,UI-1) -———> (B,&(X,X*))

u\/

(B, 11,

is a commutative diaéram of topological spaces and continuous
mappings; (B, %) denotes the set B with the topology indu-
ced by the T -topology of X . Thus, the three topologies

s 11, , and € (X, X*) coincide on B, a contradiction
to the infinite dimensionality of X (see [5], Chapt.V,
Exerc. 7.9). Hence the norms A-l_, and K-| are non-equi-
valent. The proof is complete.

Theorem 2. Let (X, 1:.0) be a separauie normed linear
space. Then there exists a norm |l . lv on X such that the

ll+ | -weak topology is on K« || -bounded subsets of X

stronger than the N« | -topology, and -l & 1-Il . 1If
X has infinite dimension, then the norms M.l and .1
are non-equivalent.

Proof. By [1], Chapt.III, Theorem 9.16 the unit ball

of X* contains a sequentially 6 (X* X ) -dense sequence
’
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(X*=(X,N-0)*%) ; 1et S ={x} be such a sequence,
and set Hxl = 2:“ 2'”‘.1 Ay (XD for x in X . Let
O+ X € X. Then there is £ € X* such that If(x)| =

= e >0. Since RS = {muﬂzlscn,nr‘lﬂ,m? is
G'(X"',X) -dense in X*  there exist @ R and u,
such that ik, lies in the 6'(1("‘, X ) -neighbourhood
{x*€ X*: |(x*~-£)(x)< 6 of £ . Then Inag, (x| & 1£(x)] =

- na, -f)(.x)|.>0 . Hence llxl, >0, and -1, 1is a
norm on X . The proof of the other assertions of the theo-
rem is the same as that of the corresponding assertions of
Theorem 1.

Theorem 3 below is the precise statement of the re-
sults of the proof of Proposition 1.1 in [21. That proof
relies on a paper of V. Klee [7]. We repeat their proof ma-
king use of Theorem 2 instead of [7].

Theorem 3. Let (X, l-ll) be an infinite-dimensional

normed linear space. Then there are two norms |:| and

me.m on X such that I-1& Il-0 £ MWl and none
of them is equivalent to Jl-ll ., If k.l is complete (that
is, (X,N-Nl) is complete), the nerms l.| and |Il- Il are
not.

Proof. Let B be a Hamel basis for X such that
l&l &4 forall #ePB eandmf{litl: eBi=0 . It
is easy to verify that Wl . |l defined as the Minkowski
functional ef the absolutely convex hull of. B , satisfies
eur requirements.

Let L be a separable infinite-~dimensional aubspgco

of (X,N-M), I lw, . the norm-of Theorem 2 corresponding
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to (L,1-1), and V=dixeL:slixll,, 13 ., By Theorem
2, the norms 1. lw; eand .0 on I are non-equivalent
and -0, £ - , This implies that the set V is unboun-
ded in CL, M- 1) 5 Y is linearly bounded since it is
bounded in (L, fi» “w)' Hence V is an absolutely convex,
linearly bounded, unbounded closed body in (L ,f-lf) ., Let
UsixeX: Axll £ 13 . Then C =con (U V) is an abso-
lutely convex body in (X, l«ll) . Suppose that C 1is not
linearly bounded. Then C contains'a line J through 0 .
Let X € J . For each integer m , mx e J and hence

mX= A, X+ (1-A )y, for some N, €[0,1],xecU ,

Yy, eV . Since m."JL”.xm' hed 0 , we have V 3
301."'(4—9!.,,‘_)4‘/,,,—'4-);:. V is |+l -closed and

hence x € ¥V, This implies that J € V , a contradiction
to the linear boundedness of YV ., We have proved that the
set C mwust be linearly bounded. Hence its Minkowski func-
tional |e¢| defines a norm for X . The inclusion W € C
implies |+l & ll«fl , Since C is unbounded in (X,I-ll),
the norms ||l &and -l are non-equivalent.

The part of the theorem concerning the completeness
follows from the open mapping theorem.

Theorem 4. Let X be an infinite-dimensional linear
space and C a non-empty absolutely convex, linearly boun-
ded, fini‘tely open subset of X . Then there are t;no norms

l-1 and l+ll on X such that C is open in (X, l-H)
and nowhere dense in (X, |-1) and |l & Il .
Proof. Let f-.ll be the Minkowski functional of ( .

It is a norm on X , It is sufficient to use Theorem 3 and
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then Proposition 1.
Theorem 5. Let (X,h-0) Dbe a normed linear space of
infinite dimension. Then there is a non-empty absolutely

convex finitely open bounded and nowhere dense subset C of
(X,Hh-1).

Proof. Let Il - lll be as in Theorem 3. It is suffi-
cient toset ( ={xe X: lllxll <4% and apply Propo-
sition 1.

Corollary. Let X be an infinite-dimensional linear
space. Then: ‘

1. there is neither a minimal nor maximal norm on X
(a norm l-f on X is said to be minimal [maximall if for
any norm fl+l on X there exists X > 0 such that

N XM-MOXWU-M & RN ),

2. the strongest locally convex topology on X is not
normable;

3. if (X,®) is a locally convex space of minimal ty-
pe (see 191, Chapt. IV, Exerc. 6), it is non-normable.

Remark. Any finitely open convex subset of X is open

in the strongest locally convex topology on X ., Hence there
is no finitely open non-empty convex subset of X which is
nowhere dense in the strongest locally convex topology. The
second part of our corollary is not the best possible re-
sult; see [9], Chapt. II, Exerc. 7.

Examples. 1. Let G be a compact subset of R* (m & 1)
with a positive Lebesgue measure, men G > 0 , X the li-
near space of all continuous real-valued functions on G ,

Al the sup norm on X, |+| = ll'l‘_”(e) (fpn21) . Then
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lel w U=l and these norms are non-equivalent on X.
(Hint: For any € > 0 , there exist disjoint closed sub-
sets Mg, Ng of G such that 0 < mev Mg < € ,
mew Ng > men G - 2€ . Let 4, € X be such that
agly = 267 iy = 0,04 u & (2e)""" .

Then Nug = (21, lug ) = (Ui 1o ()1To)™ &

& (2e.02e)D)'"™ =1,

Another hint: If both norms are equivalent on X = (C(G),then

CC(G) is a closed and dense subspace of LﬂCG). This
leads to a contradiction.) By Proposition 1, ¢ = {xe X
slxll <« 1% is a finitely open, absolutely convex, nowhe-
re dense, bounded (non-empty) subset of (X ,I1-() .

2. Let G be as above and 1 & p"< p < pn' € © .
Set -
Xom Ly (62, NeUm b g, Helhm (maw GV 10

and [+l = (man GYR=%1n" .|

Ly (@) 2
b (@) Then || £ -0 £
@ -l , Any two of these norms are non-equivalent on

X . (Hint: By [8], § 12, Sect. 1, we may restrict oursel-
ves to the easy case G = [0,1].)

3. Let

16 p"<p<n's oo, X.-l.‘”,, ,I\'ll-l-“‘\ﬁ, lo| = n-ﬂl‘”' ;
and ﬂl-“lil-l“”‘.Then l-l&nell & MM and any two
of these norms are non-equivalent.

Remark. Ddea Theorem 4 hold with "absolutely convex"
replaced by "convex" ? This leads to another question. Is
the absolute convex hull of a convex linearly bounded fini-
tely open set linearly bounded? We conjecture that the an-

swer is (generally) no.
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If e ﬂo and | -N1 in Proposition 2 are non-equi-

valent, does there exist a "monotone continuum" of pair-

wise non-equivalent comparable norms ? The answer is yes,

when H«ll, (i =0,1) are the L,",_‘,'-norms on x-L,,,,1

(n°<414) or the zﬁ -norms on X = 14,1 (p, > 1) .
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