

Werk

Label: Article Jahr: 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log68

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae

12,4 (1971)

ON NORMS AND SUBSETS OF LINEAR SPACES Josef DANES, Praha

J. Zemanek has given [10] an example of a non-empty finitely open and nowhere dense convex subset of a normed linear space. Some general theorems concerning the existence of comparable non-equivalent norms in infinite-dimensional spaces give a possibility to construct simpler examples of that type (see Proposition 1 and Examples 1 - 3 below).

Throughout this paper, X denotes a real linear space. Let G be a subset of X. G is said to be: (1) finitely open (see [6], Definition 1.10.2) if each finite-dimensional affine subspace L of X intersects G in a set open in L (in the unique linear topology on L), (2) linearly bounded if its intersection with any line is bounded (as a subset of the line). The convex hull of G is denoted by conv G, diam, G denotes the diameter of G in $(X, \|\cdot\|)$, where $\|\cdot\|$ is a norm on X, $\|\cdot\|$ denotes the convergence in the topology given by $\|\cdot\|$. G is said to be $\|\cdot\| - P$ if G is P in $(X, \|\cdot\|)$ where P is a property of subsets of X (we shall use P = weak, bounded, open). G is a convex body if it is convex and has a

AMS, Primary 46B05 Secondary 46A99 Ref. Z. 7.972.22

non-empty interior in (X, N·N).

We begin with

Proposition 1. Let $\|\cdot\|_0$ and $\|\cdot\|_4$ be two non-equivalent norms on a linear space X such that $\|\cdot\|_0 \le X \|\cdot\|_4$ (for some X>0). Then $C=f_X\in X:\|_X\|_4<1$? is a finitely open nowhere dense absolutely convex (non-empty) subset of $(X,\|\cdot\|_0)$. Clearly, X must be infinite-dimensional.

<u>Proof.</u> Clearly, C is absolutely convex and non-empty. Since C is open in $(X, \|\cdot\|_{1})$ it is finitely open. Let C_{0} denote the closure of C in $(X, \|\cdot\|_{0})$. For each $A_{1} \in C_{0}$, there is $A_{2} \in C$ such that $\|A_{2} - A_{2}\|_{0} < 1$. Then

Hence $C_0 \subset (K+1)$ C. Suppose that C_0 has a non-empty interior in $(X,\|\cdot\|_0)$. Then the absolute convexity of C_0 implies the existence of some k > 0 such that $f \times G X$: $\| \times \|_0 < k \cdot 3 \subset C_0 .$ This and $C_0 \subset (K+1)$ C imply that $\| \cdot \|_1 \leq k \cdot 1 (K+1) \| \cdot \|_0$, a contradiction to the non-equivalence of both norms.

Proposition 2. Let $\|\cdot\|_0$ and $\|\cdot\|_4$ be two norms on a linear space X such that $\|\cdot\|_0 \leq X \|\cdot\|_4 (X > 0)$. Define $\|\cdot\|_t = (1-t)\|\cdot\|_0 + t \|\cdot\|_4$ for $0 \leq t \leq 1$. Then $1^0 \|\cdot\|_t$, $t \in [0,1]$ are the norms on X, $2^0 \|\cdot\|_t \leq X (t_1,t_2)\|\cdot\|_{t_2}$ for $0 \leq t_4 \leq t_2 \leq 1$, where $X(t_4,t_2)= X (t_4,t_4)\|\cdot\|_{t_2}$ for $0 \leq t_4 \leq t_2 \leq 1$, where $X(t_4,t_2)= X (t_4,t_4)\|\cdot\|_{t_4}$ for $0 \leq t_4 \leq t_2 \leq 1$, and hence the norms $\|\cdot\|_4$ and $\|\cdot\|_4$ are equivalent, A^0 if the norms $\|\cdot\|_0$ and $\|\cdot\|_4$ are nonequivalent, then $\|\cdot\|_0$ and $\|\cdot\|_1$, $t \in (0,1]$, are nonequivalent.

The proof goes by a direct computation.

Proposition 2 says that two comparable norms can be joined by a "continuum" of pairwise equivalent norms.

The following two theorems were first proved in our thesis [3] and published without proof in [4].

Theorem 1. Let $(X, \|\cdot\|)$ be a normed linear space such that its dual space X^* is separable. Then there exists a norm $\|\cdot\|_{W}$ on X such that the $\|\cdot\|$ -weak topology and the $\|\cdot\|_{W}$ -topology coincide on the $\|\cdot\|$ -bounded subsets of X, and $\|\cdot\|_{W} \leq \|\cdot\|$. If X has an infinite dimension, then the norms $\|\cdot\|_{W}$ and $\|\cdot\|$ are non-equivalent.

 \underline{Proof} . Let $\{u_m\}$ be a dense sequence in the unit ball of X^* and $\|x\|_{W} = \sum_{n=1}^{\infty} 2^{-n} |u_n(x)|$ for x in X. It is easy to see that I.I. is a norm and I.I. £ I.I. Let M be a $\|\cdot\|$ -bounded subset of X, x_0 a point of M . If \boldsymbol{W} is a weak neighbourhood of $\boldsymbol{x_0}$ in \boldsymbol{M} then there exist $\varepsilon > 0$ and $f_1, \dots, f_m \in X^*$, $\|f_j\| = 1$ $(j = 1, \dots, m)$ such that $W_1 = \{x \in M : |f_{\frac{1}{2}}(x - x_0)| < \epsilon$ for $j = 1, ..., m \} \subset W$. Clearly, W_4 is a weak neighbourhood of x_o in M . Without loss of generality we may suppose that M contains at least two points. There are integers m, ..., m, such that $\|u_{m_j} - f_j\| < \varepsilon (4 \operatorname{diam}_{\|\cdot\|} M)^{-1}$ for j = 1, ..., m. Let $N = 1 + \max\{m_1, ..., m_m\}$ and $V = \{x \in M: ||x - x_0||_{W} < \epsilon 2^{-N}\}$. We shall show that $W_1 \supset V$. Let $x \in V$. Then $2^{-n_{\frac{1}{2}}} \mid (u_{m_{\frac{1}{2}}} - \mathbf{f}_{\frac{1}{2}})(\mathbf{x} - \mathbf{x}_o) + \mathbf{f}_{\frac{1}{2}}(\mathbf{x} - \mathbf{x}_o) \mid \leq \|\mathbf{x} - \mathbf{x}_o\|_{\mathbf{w}} < \varepsilon \ 2^{-N} \leq \frac{\varepsilon}{2} \ 2^{-n_{\frac{1}{2}}}$ for j=1,...,m. Since $|(u_{m_j}-f_j)(x-x_0)| \le ||u_{m_j}-f_j||||x-x_0|| < \varepsilon/4$, there is $|f_{ij}(x-x_0)| < \frac{\mathcal{E}}{2} + \frac{\mathcal{E}}{4} < \mathcal{E}$ for j=1,...,m. Hence $x \in W_4$ and $V \subset W_4 \subset W$. Conversely, let $V = \{x \in M : x \in M : x$

: $\|\mathbf{x} - \mathbf{x}_0\|_{\mathbf{w}} < \varepsilon 3$ ($\varepsilon > 0$) be a $\|\cdot\|_{\mathbf{w}}$ -neighbourhood of \mathbf{x}_0 in M. A direct calculation shows that V contains $W = \{\mathbf{x} \in M: \sum_{n=1}^{m} 2^{-n} | u_n(\mathbf{x} - \mathbf{x}_0)| < \varepsilon/2 \}$ where m is so large that $\sum_{n=m+1}^{\infty} 2^{-n+1} \operatorname{diam} M < \varepsilon$. Clearly, W is a $\|\cdot\|$ -weak neighbourhood of \mathbf{x}_0 in M. Suppose that X is infinite-dimensional and the norms $\|\cdot\|_{\mathbf{w}}$ and $\|\cdot\|$ are equivalent. Let us denote $X^* = (X, \|\cdot\|)$ and $B = \{\mathbf{x} \in X: \|\mathbf{x}\| \le 43$.

is a commutative diagram of topological spaces and continuous mappings; (B, ε) denotes the set B with the topology induced by the ε -topology of X. Thus, the three topologies $\|\cdot\|_{\mathcal{A}}$, and $\mathscr{C}(X,X^*)$ coincide on B, a contradiction to the infinite dimensionality of X (see [5], Chapt.V, Exerc. 7.9). Hence the norms $\|\cdot\|_{\mathcal{A}}$ and $\|\cdot\|$ are non-equivalent. The proof is complete.

Theorem 2. Let $(X, \| \cdot \|)$ be a separable normed linear space. Then there exists a norm $\| \cdot \|_{W}$ on X such that the $\| \cdot \|$ -weak topology is on $\| \cdot \|$ -bounded subsets of X stronger than the $\| \cdot \|_{W}$ -topology, and $\| \cdot \|_{W} \le \| \cdot \|$. If X has infinite dimension, then the norms $\| \cdot \|_{W}$ and $\| \cdot \|_{W}$ are non-equivalent.

<u>Proof.</u> By [1], Chapt.III, Theorem 9.16 the unit ball of X^* contains a sequentially $\sigma(X^*, X)$ -dense sequence

and set $\|x\|_{W} = \sum_{n=1}^{\infty} 2^{-n} \|u_{n}(x)\|$ for x in X. Let $0 \neq x \in X$. Then there is $f \in X^*$ such that |f(x)| = $= \epsilon > 0$. Since $RS = \{nu_{m}: n \in R, m = 1, 2, ...\}$ is $S(X^*, X)$ -dense in X^* , there exist $n \in R$ and u_{m} such that nu_{m} lies in the $S(X^*, X)$ -neighbourhood $\{x^* \in X^*: |(x^* - f)(x)| < S^*\}$ of f. Then $|nu_{m}(x)| \geq |f(x)| - |(nu_{m} - f)(x)| > 0$. Hence $\|x\|_{W} > 0$, and $\|\cdot\|_{W}$ is a norm on X. The proof of the other assertions of the theorem is the same as that of the corresponding assertions of Theorem 1.

Theorem 3 below is the precise statement of the results of the proof of Proposition 1.1 in [2]. That proof relies on a paper of V. Klee [7]. We repeat their proof making use of Theorem 2 instead of [7].

Theorem 3. Let $(X, \|\cdot\|)$ be an infinite-dimensional normed linear space. Then there are two norms $\|\cdot\|$ and $\|\|\cdot\|\|$ on X such that $\|\cdot\| \le \|\|\cdot\|\| \le \|\|\cdot\|\|$ and none of them is equivalent to $\|\cdot\|$. If $\|\cdot\|$ is complete (that is, $(X, \|\cdot\|)$ is complete), the norms $\|\cdot\|$ and $\|\|\cdot\|\|$ are not.

<u>Proof.</u> Let B be a Hamel basis for X such that $\| \boldsymbol{b} \| \leq 1$ for all $\boldsymbol{b} \in B$ and $\inf \{ \| \boldsymbol{b} \| : \boldsymbol{b} \in B \} = 0$. It is easy to verify that $\| \| \cdot \| \|$ defined as the Minkowski functional of the absolutely convex hull of B, satisfies our requirements.

Let L be a separable infinite-dimensional subspace of $(X, \|\cdot\|)$, $\|\cdot\|_{W}$ the norm of Theorem 2 corresponding

to $(L, \|\cdot\|)$, and $V = \{x \in L : \|x\|_{ar} \le 13$. By Theorem 2, the norms | . | and | . | on L are non-equivalent and $\|\cdot\|_{_{\mathcal{M}^r}} \leq \|\cdot\|$. This implies that the set V is unbounded in $(L, \|\cdot\|)$; V is linearly bounded since it is bounded in $(L, \| \cdot \|_{a_r})$, Hence V is an absolutely convex, linearly bounded, unbounded closed body in (L, N·N). Let $u = \{x \in X : ||x|| \le 1\}$. Then $C = con(u \cup V)$ is an absolutely convex body in $(X, \|\cdot\|)$. Suppose that C is not linearly bounded. Then C contains a line J through ℓ . Let $x \in J$. For each integer m, $mx \in J$ and hence $m \times = \lambda_m \times_m + (1 - \lambda_m) y_m \quad \text{for some } \lambda_m \in [0, 1], x \in \mathcal{U} ,$ $y_m \in V . \text{ Since } m^{-1} \lambda_m \times_m \xrightarrow{\| \cdot \|} 0 , \text{ we have } V \ni$ $\ni n^{-1}(1-\lambda_n)$ $y_m \xrightarrow{\|\cdot\|} x$. V is $\|\cdot\|$ -closed and hence $x \in V$. This implies that $J \subset V$, a contradiction to the linear boundedness of γ . We have proved that the set C must be linearly bounded. Hence its Minkowski functional $|\cdot|$ defines a norm for X . The inclusion $\mathcal{U}\subset\mathcal{C}$ implies $|\cdot| \leq ||\cdot||$. Since C is unbounded in $(X, ||\cdot||)$, the norms | . | and | | . || are non-equivalent.

The part of the theorem concerning the completeness follows from the open mapping theorem.

Theorem 4. Let X be an infinite-dimensional linear space and C a non-empty absolutely convex, linearly bounded, finitely open subset of X. Then there are two norms $\|\cdot\|$ and $\|\cdot\|$ on X such that C is open in $(X,\|\cdot\|)$ and nowhere dense in $(X,\|\cdot\|)$ and $\|\cdot\| \leq \|\cdot\|$.

<u>Proof.</u> Let $\|\cdot\|$ be the Minkowski functional of C. It is a norm on X. It is sufficient to use Theorem 3 and

then Proposition 1.

Theorem 5. Let $(X, \| \cdot \|)$ be a normed linear space of infinite dimension. Then there is a non-empty absolutely convex finitely open bounded and nowhere dense subset C of $(X, \| \cdot \|)$.

<u>Proof.</u> Let $\| \| \cdot \| \|$ be as in Theorem 3. It is sufficient to set $C = \{x \in X : \| \| x \| \| < 1\}$ and apply Proposition 1.

Corollary. Let \mathbf{X} be an infinite-dimensional linear space. Then:

- 1. there is neither a minimal nor maximal norm on X (a norm $\|\cdot\|$ on X is said to be minimal [maximal] if for any norm $\|\|\cdot\|\|$ on X there exists K>0 such that $\|\|\cdot\|\| \le K \|\|\cdot\|\| \le \|\|\cdot\|\|$);
- 2. the strongest locally convex topology on \boldsymbol{X} is not normable;
- 3. if (X, \mathcal{E}) is a locally convex space of minimal type (see [9], Chapt. IV, Exerc. 6), it is non-normable.

Remark. Any finitely open convex subset of X is open in the strongest locally convex topology on X. Hence there is no finitely open non-empty convex subset of X which is nowhere dense in the strongest locally convex topology. The second part of our corollary is not the best possible result; see [9], Chapt. II, Exerc. 7.

Examples. 1. Let G be a compact subset of \mathbb{R}^n ($m \ge 1$) with a positive Lebesgue measure, $max \cdot G > 0$, X the linear space of all continuous real-valued functions on G, i.i. the sup norm on X, $|\cdot| = \|\cdot\|_{L_{\infty}(G)}$ ($n \ge 1$). Then

Hint: For any $\varepsilon > 0$, there exist disjoint closed subsets M_{ε} , N_{ε} of G such that $0 < mes M_{\varepsilon} < \varepsilon$, $mes N_{\varepsilon} > mes G - 2\varepsilon$. Let $u_{\varepsilon} \in X$ be such that $u_{\varepsilon}|_{M_{\varepsilon}} = (2\varepsilon)^{-1/p}$, $u_{\varepsilon}|_{N_{\varepsilon}} = 0$, $0 \le u_{\varepsilon} \le (2\varepsilon)^{-1/p}$. Then $||u_{\varepsilon}||_{M_{\varepsilon}} = (2\varepsilon)^{-1/p}$, $||u_{\varepsilon}||_{M_{\varepsilon}} = (J_{G \setminus N_{\varepsilon}}||u_{\varepsilon}(x)||^{p}dx)^{1/p} \le (2\varepsilon \cdot (2\varepsilon)^{-1})^{1/p} = 1$.

Another hint: If both norms are equivalent on X = C(G), then C(G) is a closed and dense subspace of $L_{p}(G)$. This leads to a contradiction.) By Proposition 1, $C = \{x \in X : \|x\| < 1\}$ is a finitely open, absolutely convex, nowhere dense, bounded (non-empty) subset of $\{X, |\cdot|\}$.

Set $X = L_{p_1}(G), \|\cdot\| = \|\cdot\|_{L_{p_1}(G)}, \|\|\cdot\|\| = (\max G)^{1/p-1/p'} \|\cdot\|_{L_{p_1}(G)},$ and $\|\cdot\| = (\max G)^{1/p-1/p'} \|\cdot\|_{L_{p_1}(G)},$ Then $\|\cdot\| \le \|\cdot\| \le \|\cdot\| \le \|\cdot\|$ $\le \|\cdot\|$ $\le \|\cdot\|$ Any two of these norms are non-equivalent on X. (Hint: By [8], § 12, Sect. 1, we may restrict ourselves to the easy case G = [0, 4].)

3. Let $1 \le n'' < n < n' \le \infty, X = l_{n''}, \|\cdot\| = \|\cdot\|_{l_{n'}}, \|\cdot\| = \|\cdot\|_{l_{n''}},$ and $\|\cdot\| = \|\cdot\|_{l_{n''}}$. Then $\|\cdot\| \le \|\cdot\| \le \|\cdot\|$ and any two of these norms are non-equivalent.

Remark. Does Theorem 4 hold with "absolutely convex" replaced by "convex"? This leads to another question. Is the absolute convex hull of a convex linearly bounded finitely open set linearly bounded? We conjecture that the answer is (generally) no.

If $\|\cdot\|_0$ and $\|\cdot\|_1$ in Proposition 2 are non-equivalent, does there exist a "monotone continuum" of pairwise non-equivalent comparable norms? The answer is yes, when $\|\cdot\|_1$ (i=0,1) are the L_{n_i} -norms on $X=L_{n_1}$ ($n_0< n_1$) or the ℓ_{n_i} -norms on ℓ_{n_i} -norms

References

- [1] ALEXIEWICZ A.: Functional Analysis (in Polish), PWN, Warsaw, 1969.
- [2] BESSAGA C. and KLEE V.: Two topological properties of linear spaces, Israel J.Math.2(1964),211-220.
- [3] DANES J.: Nonlinear operators and functionals, Thesis, Charles University, Prague, 1968 (in Czech).
- [4] DANES J.: Continuity properties of nonlinear mappings,

 Comment.Math.Univ.Carolinae 9(1968),353-364.
- [5] DUNFORD N., SCHWARTZ J.T.: Linear Operators.Vol.I., Interscience Publ., New York, 1958.
- [6] HILLE E., PHILLIPS R.S.: Functional Analysis and Semigroups, Amer. Math. Soc. Colloquium Publ., vol. XXXI, Providence, R.I., 1957.
- [7] KLEE V.: A note on topological properties of normed linear spaces, Proc.Amer.Math.Soc.7(1956), 735-737.
- [8] KRASNOSELSKII M.A., RUTICKII Ia.B.: Convex Functions and Orlicz's Spaces (in Russian), Gostehiz-dat, Moscow, 1956.
- [9] SCHAEFER H.H.: Topological Vector Spaces, The Macmillan Comp., New York, 1966.

[10] ZEMÁNEK J.: Nowhere dense set which is finitely open, Comment.Math.Univ.Carolinae 11(1970),83-89.

Matematický ústav Karlova universita Sokolovská 83 Praha 8, Československo

(Oblatum 7.6.1971)