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A NOTE ON RUDIN'S EXAMPLE OF DOWKER SPACE

Petr SIMON, Praha

One assumption on a topological space occurs very fre-
quently in mathematics - the property of being normal and
countably paracompact. E.g., in such a space every'Baire
measure can be extended to a Borel measure ([3])). In a
normal and countably paracompact space, the realcompact -
ness can be described without (explicit or implicit) use
of the notion of zero-set (see [1], Note 3), namely a clo-
sed-complete space (defined below) is realcompact.

Last year Mrs. M.E. Rudin gave an example of a normal
Hausdorff space Y which is not- countably paracompact
(14] ,15)). It seemed quite natural to study some other pro-
perties of the space in order to show the importance of the
assumption of countable paracompactness in the theorems abo-
ve. It will be proved in the present note that the space Y
is closed-complete not being realcompact, almost realcom-
pact nor Baire-Borel complete (definitions below).

The following theorem was communicated to me by Z. Fro-
11k:

Let _.P be a normal closed-complete topological space.

Then the following conditions are equiva{ent:
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(a) P 1is realcompact.
(b) Let # be a maximal centered collection of clo-
sed sets without a countable intersection property. Then
the collection £={Z € #|Z is a zero-set in P§ has
not the countable intersection property.
We shall see that the space Y serves as a counter-
example - that both conditions (a) and (b) are not suffi-
cient.
Let us recall the Rudin’s definitions:
If A is an ordinal, let L(A) denote the set of
all ordinals less than A and let X (A) denote the co-
finality of A . Let N denote the set of all positive in-
tegers.
For all m & N , we define an ordinal A, by induc-
tion. Define .7\,4 to be the smallest ordinal such that
K(A,) is greater than the cardinality of continuum.
And, if A, has been defined, define A, ., to be the
smallest ordinal such that K (A, . ) > K(A4,) .
Let A be the limit of {A, Im e N} .
Let X={f:N—= LA IVneN £(m)£a,3} .
Let Y= {feXIVYmeN,K{£n)) > %, , but
Ak eN such that Vm e N, X(£(m)) < K(Ag)} .
Suppose £ and g belong to X , If, for all m &N,
f(m)<g(m)we say £ < g . If, for all m eN,f(m)<
£g(m),we say £ £ g .

Let B={UcY|forame £f6 X and geY , U=
={yeYlfc<cy £g1} .

The system B is a basis for a topology on Y, This
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space Y is Hausdorff, normal and has the Dowker proper-
ty, i.e. there exists a decreasing sequence of closed sets

D

m
u, 2 D, the intersection N{ w, ImeNi is non-void.

in Y with a void intersection, but, for any open

We may endow the set X with a suitable topology:
U c X is open iff for every x € UL there exists a
2 € X such that the set
{xeX|heN,x(h)>0 implies g (h)<z(h) £ x(k)
JeeN,x(h)=0 implies 4 (f)= z(f)= x(R)} is a
subset of U .
Then ¥ is a subspace of X . _
Denote X'={fe X|VmeN, £m)<A,? and A=
=4{A, | fe X'3 , where Ay=ig.6Y|g > %3, It is easy
to verify that the system A has the countable intersec-
tion property (abbr. CIP) and that all 'A‘ are clopen.
Lemma 1. Let € > A be a filter in the space ¥ and
let CA X’ be non-void whenever C € € . Then the system
{iTice¢? has CIP. Moreover, H{E{lic N, C, e
€ €+ A X' 1is non-void. (The symbol C denotes the

closure of C in Y .)

Proof. Given {C; |4 e« N} ¢ € , we may assume
that C,‘ 2 C’_ S... . The proof goes by transfinite induc-
tion:

I. Let us choose some f, € C n X' .

II. Let x < @)

1
defined for all B < &« .

and suppose that £, & ¥ n X' are

a) Suppose o = 3+ 1., Let 7 be the smallest index
such that £(a 4¢ Cé . Because of the condition on € we can
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find £, € C; nA‘n nX .

b) Suppose o is a limit ordinal. Let Q. (m) =
= supify(m)l <o} for all meN. Since g5 € X',
we can find £, e C, N A%n X’ .

Define f(m) = nup {f, (m)l e <, % . Since the
sequence 1£_| o« < ay } ia increasing, X(£(m)) = @ for
all me N, which implies that f e Y n X’ .

It remains to show that f e N4C; |i e N3 . Fix
ieN and g <£, g e X, For every m e N there ex-
ists £, with £ (m) > g(m) . Put fusupic, ImeN?.
From the definition of £, there follows easily that £P+4_e
€ C; , =< £,“_‘ % £ . Since g was choasen arbitra-
rily, £ € Z} .

Corollary 1. Let € be an ultrafilter in ¥, € 2
5 A u{YA X'} .Then the system {C | C &« €3 has CIP.

The ultrafilter € has a void intersection, because
NA =g .

Definition ({11,[2]). Let P be a topological space.

A space P ig called almost realcompact, if for each
maximal centered family 4 of open sets, such that 7
has the countable intersection property, N is non-
void.

A space P is called closed-complete, if for each ma-
ximal centered family % of closed meta with CIP NF is
non-void. ‘

A space P is called Baire-Borel complete, if a maxi-
mal centered collection ¥ of zero-sets with CIP has a non-
void intersection whenever there exists some maximal cente-

red collection J3 of Borel seta with CIP such that 8o %,
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Since it follows from Corollary 1 that Y is not al-
most realcompact and since realcompact implies almost real-
compact, we have the following

Corollary 2. The space Y is neither almost realcom-
pact nor realcompact.

Corollary 3. The space Y ia not Baire-Borel complete.

Proof. Lef. % be a maximal centered oollection of ze-
ro-sets in Y, ¥ o A . Then there exists at least one sys-
tem ¥ of closed sets in Y, ¥ 2 ¥ , such that F'=
={HNX'|He ¥ iis centered and maximal (to see this one must
show that £ € ¥ implies Z A X'« £ and the rest is
routine. But it is easy to prove that each closed set ¥ in

Y disjoint with X' cannot be G, - a contradiction.)
According to Lemma, & is countably centered. Let ® > &
Se a maximal centered collection of Borel sets in Y, & is
a base for 7 (this is left to the reader), which implies
that B is countably centered, too. From the maximality of

B we have N D %X . Since > A ,NZ is void.

x)

Theorem 1. There exists a maximal centered colle.-

tion ¥ of zero-sets in Y with CIP which cannot be ex-

tended to the maximal centered collection of closed sets

x) A collection of zero-sets with the same properties can

be found also in Mrdwka’s example of non-realcompact al-

most realcompact space, but Mrdwka’s space is non-normal.

It was stated in

S. Mrdwka: On the union of Q-spaces, Bull.Acad.Polon.Sci.,
6(1958) ,365-367;

S. Mrowka: Some comments on the author’s example of non-
R -compact space, ibid., 18(1970),443-448.
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in ¥ with CIP.

Proof. Let ¥ o A be a maximal centered collection
of zero-sets. We know that it is countably centered. Let
Fagx be a maximal centered collection of closed sets.

Let D, ={yeY 3l z2m, gplih)=Rgk1 .

In [4] it was shown that N{D, ImeN? = #  ana
that ,'Dm', are closed. We have to prove that D,,,_e 8", which
means that & is not countably centered. .

Suppose, for some i € N , D; ¢ & . Then there
exists an F € # disjoint with D; . Since Y is normal,
there is a continuous real-valued function ¥s ¥Y— R ,
w[Fle(0), w[D;] c (1) . The continuity of 1
implies that U = 'qr"' L1 ’ 3211 is an open neigh-

borhood of D& disjoint with F , It was proved in [4] that

’
there exists an £ & Y A X' , such that{g lg>£3cU.
Thus F=UATF > ApnF , which is a contradiction
with Fo A .

Theorem 2. The space X is realcompact.

Proof. Denote Ku.,cc" {fe X1i(m)>xi, Ly o =
={feX|f(m) & x? for « € 4,,. KM,L"‘are clo-
pen in X , hence zero-sets.

Let ¥ be a maximal centered collection of zero sets
in X with CIP.

Define g (m) = <mf{x|L, ., € £} . Since ordi-
nals are well-ordered, Lm"“‘, belongs to % .

In order to prove that N & £ , it suffices to
show that g @ Z*  for each 2 € £, Let W be a neighbor-
hood of g ,Then there exists anf< g ,Un{ylf<qy =g},
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The maximality of ¥ implies that C, = X, o, A Lm,g;m)
belongs to X , For £ € ¥, ZAnN{C,Ime N}
is non-void because of CIP. But N{C, Im e Nic U .
The proof is complete.

Remark. The same method of proof can be used to show
that there exists an fe X withfeN{Z” 1Z e Z 3
for every maximal centered collection X of zero-sets in
Y with CIP.

Theorem 3. Let P= X -4y € X |1 Im Kigym)) &£ 4, 1
be a subspace of X . Then Pw v Y (Hewitt realcompactifi-

cation).

Proof. It suffices to verify the following:

I. P is realcompact,

II. Y is dense in P ,

III. every point 4 € P is & limit of a unique maxi-
mal centered collection of zero-sets in Y with CIP.

Proof of the first part is analogous to the proof of
realcompactness of X ., The second statement is obvious.-
For the third one, consider a point f1 € P~ Y, Define
A.'r- {iyeYlf<ny € pt for every-.‘.‘ﬁ.,fex and
AP = 1Ay If<p,feX} . Let X be a maximal cen-
tered collection of zero-sets in ¥, £ o A™ . The fact
that £ has a countable intersection property, can be shown
similarly as in Lemma 1. X evidently converges to 4 .

2 is unique. Suppose the contrary: Let X # Z be
a maximal centered collection of zero-sets in Y with CIP
which converges to {1 . Then there exist B, € ¥, and
ZeX,28,nti= g.Let MmwineNIK(p(n))=a,f .
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FormeM , let { Pa,m | ¢ < W, H be an increasing se-

quence of ordinal numbers, converging to 42(m) . Define

an ordinal number 3 < @, to be odd, if there exists a

limit ordinal ¢ and a natural S such that 3= + 2%+
+ 1 and even in other cases. Since 21 converges

to f, Z1nAr¢ﬁ for each f < n .

Let us choose some £, 6 X , £, < f .

Let o be an ordinal, o = @, and suppose that £Il
have been defined for all B < e, f,(m) < fa(m) when-
ever me N-M .

a) « is o0dd, & = B+ 4, Let g (m)= £,(n) for
A m for me M . Since Z,‘nA:* a,
we can find f e £ A A:« such that f (m) < n(m)
for me N-M .

m eN-M, g, (m)=

b) & is even, «« = B+ 1. Similarly as in a) we shall
find £ e Z n A‘:‘ with £ (mn)< p(m)  for every
me N-NM ,

¢) o is even, ov is a limit ordinal. Put M, (m) =
= pupnffy(m)if<a? and let g, (n)= by (m) whenever
meN-M, ge(m)= b, , for meM . Agein we shall
find an f e Z n A‘;"“ with £, (m) < p(m) for m e
e N-M ,

It is easy to show that the £ defined by £f(m) =
= M{fﬂ'(n)lx<q'§ belongs to 21 NE AY = Z,t ng,
which is a contradiction.

Theorem 4. The space Y is closed-complete.

Proof. Let ¥ be a maximal centered collection of clo-
sed sets in Y with CIP. Consider the system £ ={Z ¢ 5| 2
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is a zero set in Yf#.Obviously ¥ is a maximal centered
collection of zero-sets with CIP and, if N¥ & & ,
then NF = 4 .
Suppose N ¥ = Z . From the remark after Theorem
2 it follows that there exists some n e X with p e
e N4ZX|Z 6 X3 . If, for some m e N, K(p(m)) =
= “o . then Z has not CIP (the countable system of clo-
pen neighborhoods of 4+ intersected with Y belongs to
Z because of the maximality), which is a contradiction.
If, for each m € N , there exists a Avm' with
K(»fy(‘bn)) z2 A, ,
=fk,)} for < =4,2,3,.. . Clearly N(D} lie

define D) =iy € YIAm 24, ¢ (h,) =

eN3 =g and we may prove that D; € ¥ by mere modi-

fication of the proof of Theorem 1 (replace D, by D) ,
A by AT , where A™ has the same meaning as in Theorem
3). We see that in this case # has not CIP, which is a

contradiction, too .
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