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ABSTRACT SEMILINEAR EQUATIONS WITH SMALL NONLINEARITIES
Miroslav SOVA, Praha

Let U, X be two linear topological convex Banach spa-
ces over the real or complex number field, & a linear ope-
rator from U into X and F a transformation of U intoX.

For simplicity, we shall denote by D.(G) the domain
of definition of & ; R(8) =460u: uw e D(6)} |,

N(O) = fu:ueD(O), b = 03 . Naturally D(O) ,
N(6) are linear subspaces of U, R(B) of X .

We shall consider and try to solve the equation B =
=¢F(w) where ¢ =2 (0 is a ("small") parameter.

We shall give two existence theorems for this problem
with fairly detailed proofs and three applications to semi-
linear wave equations without detailed proofs which will be
treated in another paper. Our main purpose is to solve also
the so called critical case. The non-critical case
(N(8)=10},R(0)=X)is naturally included but is itself es-
sentially simpler.

Our approach to the problem is geometrical but we have

eliminated the complementability of the subspaces WN(8) ,

AMS, Primary 4TH15 Ref. 2. 7.978.5
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R(8) (i.e. the existence of corresponding projectors)
by means of quotient spaces. The solvability of the so cal-
led bifurcation equation is postulated, but the necessary
properties of the solution are deduced from the properties
of ® and F

Geometrical approach to problems of this type was ini-
tiated by Cesari and used by many authors (Hale, Lovicarovs,
de Simon-Torelli, Torelli, Bancroft-Hale-Sweet, Hall, etc.

- see the bibliography at the end).

Theorem 1. If

(I) U is a Banach space and X =& normed space,
(II) for every sequence a, € D) such that O, is

compact, there exists a compact sequence Eke u such that

oy = &, e NCO) ,

(II1) N(6), R(O) are closed,

(IV) for _every s € UL  there exist an open subset M € U
and a constant m gsuch that « € M  and for every ay oy
“w, e M

M'-‘(u-,,)-?(uz)ll & m llu1 -a, o,

then for every open subset S & U  satisfying
(<) there exists a constant ¢ > O such that for eve-
Iy w,u"€eS, u'-u"e N(B) and for every x € R(8)
WFw) =Flw") —xll 2 m ' -wu"l

(ﬁ) for every w4 € S | there exists a £ € S such
that u -4 € N(B) and F(@m)e R(B) ,
() SnN©E) *g ,

there exista 4 > 0 and a function 4% on <0, %) into S
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such that

(a) 4 is continuous on <0, ) |

(b) 1 (e)eD(B), 64(e)=¢eF(k(e)) for every

0<eed,

(c) there exists a constant d > 0 such that for eve-
ry 4 € S and 0 £ ¢ s & satisfying
e -0l 2d, u eD(B), 0 € £, Ou==¢cF(u),
there is w« = 44 (e)

Proof. Let us denote W= N(8),Y= R(8) . Ais these
subspaces are closed by (III), we can introduce the quotient
spaces V= u’/w' and Z = x/y with norms denoted by

. and with zero denoted by 0 .

Moreover, let TT be the canonical transformation of X
onto Z which is defined by TX = x - Y for every
x e X,

Now, we can replace the inequality in (o) by
(1) lIITTF(.«.d) ~TF I =2 m hu, - 4 (|

2
and the inclusion F(&Z) e R(®) in (B) by
(2) MP(z) = 0 .

Let & be a fixed open subset of W satisfying (ov) -
(7).

Let us take & =fv:veV, vnS+g1% .
It follows from (/3) and (2) that there exists a trans-
formation J of & into U such that for every o € §

(3) J(wv)ewrn S |,
(4) TF(J(ar)) = 0 .
Further (4) implies

(5) : 0e S .
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Bearing in mind the openness of S we obtain from

(IV) that there exist two constants e and m such that

(6) e >0 ,
(7 {fuw:luw-J0)l £t =S ,
(8) ﬂP(u.q)-F(u.z)ll émlw1—u2l

for every lu, - J(O)I < 9, Na, - J(O) Il < 92 .
It is clear from (8) that
(9) m 2 0
Now we shall prove that
m
(10) 1I(w) - oyt & (= + 1) Ho =gl

for every vl & £ , 1J(s) - 2@ & 5 .
To this purpose, let us first fix 4 and @,  so that
(11) Herll & % ,
(12) 13 coy) - 30 & E
It follows from (3),(6),(7) and (11) that for every 0 < m £

& % there exists an element 2 e U satisfying

13) wewnS, la-Jyl £ llo-a,0l +m .
On the other hand, as J(4,) e a;, eand J(0)e @ by (3),
we obtain from (12) immediately that o, il k.. which

™
implies together with (11) that
€
(14) ar - o, Ml = <5 .

Now, from (13) and (14) we obtain
(15) lar - 200 & Ilv-J(ﬁg)ﬂ-o-llJ(@;)-J(O)l\é
® .3 1
cllor-ll+q+ T SRR,y £ .
Using (8),(9),(13) and (15), we have

(16) WTFQ ) -TF)Il & m NI -l &

emilo-yll+mn .
On the other hand, (oc),(1),(3) and (13) imply
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(17) WTF(I(r)-TF(w)ll 2 m KI(r)=ar il .
Now we see from (4),(16) and (17):

0= NTFI())-TTFI(, DNl =
ZMTF(IC))-TIF ()il - UTTF(I(ay N =-TTF ()N =
Zmhld)-vl- millv-vw Il -mn

which may be rewritten as

m m
(18) N1Iw)-vl e = Nlo-apll+ 2 7 .
Using (13) and (18), we have, finally,

NICr) = J(op)l £ 1ICer) = ard+ 1) - vl £
2(Z+Nllv-vil+ (T +

which implies (10) since 7 may be arbitrarily small.
Let us now denote §, = {ar:wveV, vl £ X ar13.
4 m
It is clear that
(19) 50 is & closed ball in V¥, contained in § ,
We shall prove
m
(20) lJ(wj,)—J(%)ll‘(-,,;--&-Hﬂlag-anll
for every o, ¥, € S, .
To prove these, we use (10). Let us first take 4' = o

2
and ¥, = @ in (10), which is evidently admissible. Then we
obtain 13(e) - (O & (Z+ Ul < (T+NE (™! =

= % . Consequently, we can take ¥ = W

and v, =, in
(10) and obtain immediately (20).

Now we see easily from (6) and (20) that
(21) N J(ar) = JCO) Il £ 0e for evexy v e, .

Let us now define 5 as an operator from ¥ into Y

~
by the following way: ar € D (6) if and only if
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v cD(8) eand B4 is the common value of all Ov
for 2 € A .
We need to verify now that
(22) 3 is a one-to-one operator from V¥V onto ¥ and
8-" is bounded.
In fact, 5’ is a one-to-one operator from V¥ onto
Y by definition. We see almost immediately from (II) that
5'4 transforms compact sejuences from Y into compact
sequences from V , This implies that 5"1 is a bounded
operator on ¥ into V , If this were not true, then the-
re would exist a seguence NYee € Y such thatl\ah‘l P |
and Ilg"'/.rhlll—y. oo . Moreover, we can 4euppose na-1 Ay Il =
>0 . Let us now take G = ] 6'1%"1-5 . Then evidently
<y —> 0 and i} 6‘40%4}«*‘"!: L7 i} 5-‘,.,%111—* co . But this
leads to a contradiction: Cpe Ype, is undoubtedly compact,
on the other hand, 5‘405“ny‘,, cannot be compact.
Let us rewrite (4) as
123) F(I(w)) € 12 for every v € § .
Now, (22) and (23) enable us to define
dw) =B6"1"F(I(w)), v €S .
He obtain from (7),(8),(20) - (22) that
(24) WG - QN & AT N em (F+ ) Wy - v,

for every o3, vV, € So .

41
It follows from (19) and (24) that we can find a con-
stant 4 such that

(25) 0<d e T UE Nm (Fan)e"
(26) D Pdw)e S, for every w €S, ,
21 WABa) - DR vl &gl - v
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for every w,, v, € §, .

In virtue of (I),(19),(25) - (27), we can use the Ba-
nach fixed point theorem to the tranaformation e & in the
complete metric space 5, for every 0 & € £ 2 and we
obtain a function 2 on <0,%) into S, such that

for every 0 2 € = 2
[

(28) vie)e 5 S, ,
(29) ed () = n(e) ,

(30) 2 (e) is the unique solution in 8, of the equation
ed(v) = v .
By the definition of ¢ , we can rewrite (29) as
(31) we)eD(B), Byp(e) = eFI(np(er))
for every 0 < €& = & .
Now we shall prove that
(32) % is a continuous function on <0, >
In fact, it follows from (24),(25) and (29) in view of
the definition of 8, that
LLICRER JCRLEY X4 () -¢ &y (e, &
< le - €,l HPrpCe)il+e,ll Plole,N-Plnle, N £
< lg - TN+ IFNm (BT (" +
+ 3 NFNm (T ) Nple)-ple)IN =

1 . 1
=lg,- 6, | LUGOM+18"Im F1+ 7 wie) -plg)l
which implies
M %3 1e -

e, - e & 20 GON+18Im ZTIle - g,
and (32) is an immediate consequence.

Let us now take Ji(e) = I(m(e)) for0se s > .

It is easily seen from (3),(28),(31) and (32) that 4
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satisfies (a) and (b).
Thus we have only to prove the unicity assertion (c).
It follows from (3),(4) and (e« ) that
(33) for every # € S such that WF(«w) = @  we have
a=Jdlw+W).
Let us now take d = %(%’:— +4)"" and let w sea-
tisfy the suppositions atated in (c) for some fixed 0 < € =
< 2% . Let us take ¥ =« + W . According to (28), we ha-
ve N - i (Ol = N =IO & d = 2 (Z+ 1)
which implies, in view of J(0) € @ that
Hol e E e i
(34) veS, .
As u € D(O),6u = eF(w) , we see first that
MF(w) = 0 which implies in consequence of (33) that

(35) m o= Jlw) .

On the other hand, we see that

(36) veD(@ , v =eFlw) .
Using (35) and (36), we have

(37) = edv) .

Hence we obtain from (30),(34) and (37) that v = ¢ (€) and,
as 4L (e) = I(x(e)) , we have from (35) that w = 4% (g) ,

which was to verify.

‘Remark 1. Theorem 1 generalizes many results provable
under different hypotheses for special types of operators 6
and F , In particular, the differentiability of F plays
an important role and was used in many papers - see the bib-

liography at the end. We shall give an abstract form of
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sufficient differentiability conditions in a separate note.

Proposition 1. If the conditi f Theorem

holds, then the condition (IJ) of the same theorem is equi-
valent with: (I1°) for every sequence 4, & D(8)  such that
@u, is compact, there exists a weak mpact 8

Ay, e W guch that e, - iy, € N(O) .

Proof. We shall use the operator 6’ constructed in
the preceding proof.

First, if (II) holds, then by (22) of the above proof,

5 is bounded and consequently it transforms the compact

sequences of ¥ into the compact ones, and thereby as well

into the weakly compact sequences of ¥V . From here immedia-
tely (II°).

Conversely, if (II°) holds, then we obtain by almost the
same argument as in proving (22) that 5 is bounded and con-
sequently it transforms the compact sequences of Y into the
compact sequences of V . But this implies (II) by a simple

way.

Remark 2. According to the preceding Proposition 1, we
can replace the hypothesis (II) of Theorem 1 by the ccndition
(II°) of this proposition.

Proposition 2. e _conditio I n_Th 1

are equjvalent with
(I11°°) @ i closed operator,

(III°’) R (O) is a closed subspace.
Proof. Let us construct the operator 5’ as above in

- 793 -



the proof of Theorem 1. Moreover, we shall use the notation
of this proof.

We shall first verify that (II),(III) imply (II'°),
(ITI"’). Obviously it sufficest to verify (II’°’). Using
(22) from the above proof, we see that &-7 is a bounded
operator on ¥ into ¥ . Consequently ] is a closed ope-
rator from ¥ onto Y and it is easy to deduce from this
the closedness of @ itself.

Conversely, let (II""), (III°’) hold. It follows imme-
diately from (II'‘) that N(8) is closed. Therefore (III)
holds. Further we obtain easily from (II'"), (III’’) that 8
is a one-to-one closed operator from ¥V onto Y . Consequent-

1y, 6'4 is also closed, which implies, according to Banach

closed graph theorem that it is continuous. Then (II) is an
immediate consequence.
Cf. also T. Kato: Perturbation theory of linear opera-

tors, p. 231.

Remark 3. 'According to Proposition 2, we can replace the
hypotheses (II),(III) of Theorem 1 by the conditions (II"”),
(II1°°) of this proposition.

Theorem 2. If
(I) W,X are normed spaces,

(II) for every sequence 4, & D () such that Ow, is
bounded, there exists a compact seguence Ehc W  such that
My - i, € NCO) ,

(I11) N(8) ,R(8) re closed,

(Iv) F is continuous on U into X ,
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then for every open subset S € U gatisfying

() for every two sequences w, , 4y € S guch that
u-;‘- wy, & N(O) and that for some seguence X, €
€ R(9)

Flug) = Flug ) - x,, —> g,
there is g — ag, —> 0,
(3),(9*) as_in Theorem 1,
there exist a constant 2 > 0 and a function 4+ gp <0,2>
into S such that
(8) Mm(e) —> 4 (0) (e — 0,) and the set
{Mm(e)0&e €% is compact,
(b) as_in Theorem 1.
Proof. We shall use the first part of the proof of Theo-
rem 1 till (5), only (1) must be replaced by
(1) for every two sequences L, , Ay, & S such that
My - ay 6 NC(O) and that TTF(a)-TF(ug ) — 0,
there is w, - my — 0 .
Hence we continue the numbering by (6).
Now we shall prove that
(6) J is continuous on § into U .
In fact, let o€ S and let w, ,Re{1,2,...3 be
an arbitrary sequence from S  such that
(. Ve = V .
As J(w)ew by (3), it follows from (7) that we can always
choose a sequence Vie » fo e 11,2,..,3 for which
(8) g, € 4y, for every o e 4£4,2,...%,
(9) Yy —> J (W) .
Moreover, as S is open and J(w) e S likewise by (3)
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it follows from (9) that there exists a M, € £1,2,...}
such that
(10) %, e 5 for fe = &,
According to (4), we have TTF(J(v) = @ andT\'F(J(vk)-O
for M € £4,2,... ¥ and consequently we can write
(11) TFI () - TF(2) = TR () - TF ()
for % € €4,2,...% .
But it follows from (IV) and (9) that TF(J(w)~TF(xg)> 0
and therefore in consequence of (11)
(12) TF(I(w,) -TTF(y,)—> 0 .
Further, we see immediately from (3),(8) and (10) that
(13) XNyl eS8, 5 eSS, D(vg)-1 e W  for fo =i,
Thus (12) and (13) enable us to apply (1) from where we ob-
tain
(14) dCog) - %, — 0 .
Finally, combining (9) and (14), we see that J(wy )— J(w),
which was our aim to prove (6).

In consequence of (IV) there exists a constant se such
that

(15) : e >0 ,
(16) fuslu-Jd0OMentssS ,
(17) IF(w) ~F(IXONN & 4 for hw -JC(O)N < ¢ .

On the other hand, in consequence of (6), we can find a
constant #¢, such that
(18) s 0=, o« 9% ,
(19) 10(w) - 2(0)1 € ¢ for Harll & o, .

Let us now take 5, m {3 Do fl < o0, 7

It follows from (18) that
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(2¢) S, is a closed ball in V , contained in S .
We see immediately from (17) and (19) that
(21) IF(I(w)) —=F(ICONN £ 1 for we S, .

Let us now define the operator 5 as in the proof
of Theorem 1.

We prove without difficulty under use of (I),(II),(ITI)
that
(22) & is a one-to-one operator from ¥ onto Y such
that 6‘4 is compact.

Especially, in consequence of (22), there exists a
subset K g V such that
(23) K is compact and convex in WV .
(24) 5‘44, e K for every 4 € Y,

fy - FOOWWNL £ 1 .

Owing to (4)
(25) F(I(w)) e Y for every v € $ .

Thus (22) and (25) enable us to define

d(v) = F"FIw)), wvelS .

Now, we shall prove that

(26) dveK , velS, ,

(27) & is continuous on $, into V ,

In fact, (26) follows immediately from (21) and (24),
and (27) from (III),(6) ard (22).

Using (20),(23) and (26), we can find a 2% > 0 such
that
(8) 2@()e S, for veSl, .

So, (20),(26) - (28) enable us to apﬁly the Schauder
fixed point theorem to the transformation e ¢ in S,
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for every (0 & & £ 2 and thus we obtain the exia-
tence of a function on <0,4> into §, such
that for every 0 &= ¢ & 2

(29) w(e)e eK |

(30) td(n(e)) = nle) .

But we can rewrite (30) as

(31)  w(e)eD(), Fn(e) = eF(I(p(e)))

for every 0 £ € = 2 . .
Finally, let us take 4 (&) = J(0p(€)) for O &

€ e £ D . " _
It is now an easy matter to deduce (a) from (6),(23)

and (29) and (b) from (3) and (31).

Remark 4. The assertion on local unicity of the type
(¢c) in Theorem 1 seems unprovable here, at least by the abo-

ve method.

Remark 5. The condition () in Theorems 1 and 2 postu-
lates the solvability of the so called bifurcation equation
in a completely general form. :

We give two more suggestive formulations:

(3°) for every w € S  there exists a wr ¢ N(8) such
that

mr+weS, Flu+rawr)e RO ,
(") for every w @ 5  there exists a wr € N (&)
such that

wa+wr eSS, TFusw)=20

where TT is the canonical transformation of X onfo
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x/n(g) defined by Tx = x + R(8) for x € X .

In the sequel we shall describe (Examples 1 - 3) some
applications of Theorems 1 and 2 to the periodic problem
for semilinear wave equations, without detailed proofs. Gn
these examples we denote by R the real number field and
by C® the set of all infinitely differentiable functions
@ on <0,2mx) whose derivations are 2 -pericdic,
i.e. g‘m(O) - 9‘"’(2#) for every 1 € {0,4,... ¥ .

Example 1. Let £ be a real function on <0 ,2s ) x
»x<0,r> « R  such that
(1) £C0,§,n) = £(27, §,1) forell 0 &« f &,
~ &R,

(11) £ is continuous in all variables and

V¢, 6, m )= £CE,§,8)) & @w(@)ln -1,
for gll 0 &t £ 2x, 0& F 5o ,lInl,lx,l « o,

(IITI) there exist a constant ¢ > ¢ and a number » €
6 {0,1% go that

(=1?CECt, f,n)-FCt, §,1)] 2 clr,~- 1)
forell 0t & 27, O0&f &, 1 €« £, .

Then there exist a cogg&enﬁ P >0 nd a_real func
4 on <0,2m7> »x <0,mw> x <0, such that

(1) 4 (0,f,€) = (27, §, &) for all
0 f=m, 0& € &« 2 , gnd 4 js continuous
in all varigbles,

® [ g e, §,e)de wice geps
tinuously derivable in 0 & § & 2% for _every
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pel®, 0<e = & ,

L) ace, g, e)dn - g;-, L i 2, §, E)dr =
e [ P(e)£(c,f, 4 (2,5, e)de
for every p e C¥,0&f £ O0<e = 2 and
AiCt,0,e) = 4i(t,me)m0 for every 0 &t & 277 ,
l<e = ,
(C) there exists a constant d > 0  such that for
any real function « on <€0,27> x <0,a > and for
0<e &£ 2>  satisfying [« (t,§)—4i(t,§,0)1«d

for every 0t & 2, 0& § <« 7 and the above
properties (A),(B) with «  inatead of 4¢* , there is
wlt,§)esi(t,§,8) for every 0 £t < 27 ,

0 §=m .

Qutline of the proof. We choose U = X =< = the real
Banach space of all real continuous functions on
0,27 > %<0,m> such that 4 (0,§) = w(2,¢§)
for 0 & § € o with the maximum norm. )

Now @ is defined as followa: &4 € D (0) &>
1) ww e < -,
(2) w(Ct,0) m w(Ct,ar) forall 0&t < 20 |
(3) J;“rg’ ()ulz,-)drw is twice continuously

derivable for all p e C* ,

(4) there exists a function h e € such that
2. s
'Gztryn(c)uc'r,?)d.e- gfi S e@Iulz,fldr =
amr
=4 g mie,§de

for all @ € C® ana 0 & f &« .
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Then 6w = h .
Further F is defined for all « 6 € by the for-
mula
Fluw)(t,§) = £Ct,§, w(t,§) .
Finally we choose S = U
Now it suffices to verify that 6, F, S  satisfy the
hypotheses of Theorem 1. But this is elaborate and will be

described elsewhere.

Example 2. Let £° be a real function on <0, 2s) x
x <0, > xR xR xR such that

(n £00,§,2,n,)=£(2m, §, 1, 1, Q)
for 811 0 £ § < o, "y'f"iﬂ,‘n ’
(11) £° is continuous in all variables and
'f"fyﬁ,m.,,ﬂ,,iﬂ-f'(f,fr'b,_,%,,,qt,” &
£ @@ -nrl+ln -n,l+lg, —g,1
for all 0 £t £« 2 ,0£ § &7, In |, Iz, 1, Il ,
In,l, Ig 1,12, « @,
(III) there exist three constants a,&,c,a+& ~-4we >0
and a number 2 € {0,413} such that
o ' . .
(-1 LECt, §,x,,1,,0,)-£Ct, $,0,,n,,2,7] 2
Zaln-n)+ k(g,-g,) —eclry-n, |
forall 04t &« 27, 0§ &, pn &«p,
2 * U k,, %, € R .

Then there exist a constant 2 =0 and a real function
4 on <0,27> > <0,sr> % <0, > such that

(A) 4 (0,§,e) = #CQ2m,§,¢€) for all

- 801 -



0% §aor,04€ £, 4 is continuous in all vari-
ble,,c'c'«’,.o'i-f ist everywhere and are also continuou
in all varigblea,

(B) .{;Mrg:(z)ﬁ(z,f,e)d'z is twice continu-
ously derivable in 0 & f < or for every 9 € C® ,
0<e € P,

2

2w
4 eI A, f, e)de - ;;E b (Tl (e, f,e)de =

=t [ )£ (2, , A2, E, £), 4, §,8), b (x, f,eNd
for every g € C¥, 04 f, &, 0<e £ B, s (t,0,e) =
= #(t,or,e)=0 for every O£t « 22,
0<e = B,
(C) gs_in Example 1.
Qutline of the proof. We choose X = € (see Example 1)

and U = ¥’ = the space of all continuously differentiab-
le functions from € with the norm I le. = lu lc +
+la, by, + lfu.ci ly .

Now @ is defined as the restriction of the © from
Example 1 to the space €° and it operates consequently
from U = €° into X = ¢ .

Further F is defined for all « e €° by the formula

Flu)(t,§) = £°Ct, §, a(t, §), w,(t,§), g (t, £)).

As in Example 1 we choose S =~ U .

Our example follows again from Theorem 1, but the ela-
borate verification of its hypotheses will be given elsewhe-

re.

Exemple J. Let £ be as in Example 1 with the following
properties:
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(I) as_in Example 1,
(1I) £ 4is continuous in all vagrigbles,
(III) there exist two constants o« >0, « =2 41 gand a
number » ¢ 10,4% such that

(=1L, §, 1) ~£Ct, F,0] 2 @ £yl gy~ 1n 1*n, ]
for all 0&te 2y, 0§ &, 1, & £,
Then there exist ® oonstant 2 > 0 gnd a real function
A on <0,2x) x<0,;r> x<0,4> such that

., ) A(0,f,e)= 4 (2 f,e) forall 0« Ff &

<g,0& € « 7, the function 4 is uniformly bounded
in all variables, 4 (t,§,e) —> 4 (t,§,0)(e—+0,)

uniformly in 0 &t &« 2 , 0 & § & o , e c=
tions 4 (.-, e), 0 & € & 2% , are equicontinuous in both
variables,

(B) g8 _in Example 1.

Outline of the proof. We choose U,X and we con-
struct @, F as in the proof of Example 1.

Further we choose S = U .

Then we can verify the hypotheses of Theorem 2, but
this will be given elsewhere. Our example is an immediate

consequence.

Remark 6. The assertions (B) in Examples 1 - 3 say that
the function 4% (-,-, €) is a generalized solution (in the

senase of Petrowsky) of the wave equation gy = “if -
=.ef(t,§, «(t,¢)) (Exampleal and 3) or «,, -
T £(t, §,a(t,§), w‘(f,f),u!(t,p)(h.‘xanple 2).
This is easily verifiable by means of the integration by

parts and by approximation.
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Remark 7. An application of Theorem 2 to the case stu-

died in Example 2 is not possible. In fact, for the opera-

tor 8 constructed in Example 2, operating from ¢’ into

¢ , we cannot verify (I) of Theorem 2. This problem will

be solved in a subsequent paper.

Addendum. After this note was written, we have been

acqgainted with two preprints of W.S. Hall (The bifurcation

of periodic solutions in Banach spaces I,II), where the met-

hod of quotient spaces is used, too.
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