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ON CNE-PARAMETER FAMILIES OF DIFFEONORPHISMS II: GENERIC
BRANCHING IN HIGHER DIMENSIONS

Pavol BRUNOVSKY, Bratislava

§1

In (1], we have studied the generic nature of the loci
of periodic points of a diffeomorphism of a finite dimen-
sional manifold M , depending on a parameter with values
in a one dimensional manifold P, in Px M . A part of the
results (those concerning the branching of periodic points),
we have proved for two dimensional M only. It is the pur-
pose of this paper to extend these results for M of ar-
bitrary finite dimension.

Since this paper is a direct continuation of [1], we
shall frequently refer to [1] for results of technical cha-
racter as well as techniques of proof. Nevertheless, for
the sake of the reader’s convenience, we re-introduce tho-
se concepts and results of [1] which are necessary for the
understanding of this paper, in the rest of this section.
The main results of this paper'end their proofs are given
in § 3. § 2 has an auxiliary character; it establishes cer-

tain generic properties of maps of an interval into the
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set of matrices.

Denote ¥ the space of (™ mappings(1 < n = oo) x)
£: PxM—> M , where P, M are C® second countab-
le manifolds of dimension 1 , m < c0 respectively, such
that for every n € P the map £, ¢ M— M, given by
£, (m) =£(p, m) is a diffeomerphism, endowed with

“the C Whitney topology.

Let us note that, although this topology is not metri-
zable, it has the property that a residual set in & (i.e.
a countable intersection of open dense sets) is dense in
& (this can be proved similarly as the analogous state-
ment for vector fields is proved in [2], using the openness
of & in the set of all C* mappings Px M —> M ).

Denote by Z, = Z,(£) the set of fe -periodic
points of £ , i.e. Z (f) = {(p,m)lfz’(m-) =m ,
f: (m)+ m for 0 < 4 < &}, In[1l, Theorem 1] a
residual subset ¥, of F was defined and it was shown

4

that for every f e ?:'

folds of Px M (Z, being closed) and, if an eigenva-

, Zg,< are one dimensional submani-

lue of d.ff‘: (m)- at some point (n,m) € Z, is 1

(we denote the set of such points by Xg ), then it meets
the unit circle S in the complex plain transversally at
(n,m) (in the sense of Remark 8) and the remaining ei-
genvalues of d.f: (m) do not lie on S , Also, it was
shown that the subset 3"," of maps from & , having the

x) In [1] we have assumed 4 < 2~ < oo , but Theorems 1 -

4 of (1] are trivially true for the (% case.
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above properties for 4 £ f¢ =< M ,is open dense in ¥,

§ 2
Denote by YL the set of all m x m matrices with
the differential structure induced by its natural identi-
fication with R""z . Further, denote by L, the set of
matrices having an eigenvalue of multiplicity = 2 on
S, 9,, the set of matrices having an £ -th root of
unity different from ¥/ as eigenvalue, ‘BC,_=‘L?3‘¢1‘ .

Let I be a closed interval on R . Denote by d the
space of all C* mappings I — €L endowed with the
C* uniform topology.

Proposition 1. Let J c I be a closed interval,
Jecint I . Then, for every £ = 3,4,... the set
YL(J) of all Fe & such thatF(J)n(‘(lL,,u‘ﬂlz)r
= @ is open dense in § .

Corollary 1. Given J as in Proposiion 1, the set
Y(J) of all Fe @ such that F(I) n (L, N €)=
= () is residual in & .

For the proof of Proposition 1 we shall need to prove
several lemmas.

Consider the sets % ={(A, A, ) e X x
=R B (4,2, = B, (A, 2) = B (A, 2,) =
=P (A,,2,) = 0,2% +2, =43 and A, (A, Ap) =
= AA A, AR A, Q) = B (Ay,2,)=0,
a,:am, %.’ .ﬁ” 3, where PA,) = A (Red,Im L) +

+ 4 Py_ (ReA, Im A) is the characteristic polynomial of
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3P
¥

3 . (-4
Being defined by polynomial equalities, %1 and

A,B +if) =P =

~S
U, <Ay, Ny, ) are real algebraic varieties and the
aets~<8£1 , ‘(/62‘ are the projections of ‘&1 and
Ve, (A, , Ay ! into €¢I respectively, where
the union is taken over all A, .7(.20
. 2

(.7\.10-1-1;-&“) = 1 and A“#Oﬂ. 5

By [3, splitting (b) of § 11)], %,, and ‘012 can be
written as a finite disjoint union of submanifolds of

strictly decreasing dimensions, ‘ﬁl = U .M. ﬁ (.2.40,.1 )=

such that

»
-’L'J'Jf such that U M’? , 5'6, Jf‘a_ is closed

for all 0 < @ £ 1, 0<6r./.~>.

Lemma 1. codlim M = 4 for all F -

For the proof of this lemma we need some more lemmas.

Lemma 2. For any A € YL , the set of all matrices
similar to A is an immersed submanifold of ¢ of codi-
mension Z m .

Proof. Consider the group GL (m ), whose action %
on ¢§ is given by ¥ (TA) = T'AT for Te GL(m) 5
A € YL . The set of matrices similar to ¢f is the orbit
of A under this group action and, according to [4,2.2,
Proposition 2], is an immersed submanifold of ¥/ of co-
dimention equal to the dimension of the closed Lie subgroup
H={TeGLm)I v (T,A) = A} . It is easy to show
that H is identical with the subset of GL(m) of mat-
rices that commute with A . It follows from ([5,VIII, §2,

Theorem 2] that H has the dimension = m , q.e.d.
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Corollary 2. Denote by .y the map €4 —> R™ as-
signing to every matrix from ¥, the m-tuple of coeffi-
cients of its characteristic polynomial and f : a —

—> R™*2 a8 fi = p x id . Then, for any point
X € R"“'Q‘ 5 4»"4(:() is a finite disjoint union of
immersed submanifolds of "d of codimension = m .

Denote by V c R™*2  the set of points
(084 greey 0y, by, Ay) such that A=A +iM,e5
and is a root of the polynomial P(A) = A™+ ov, an-ty

+ e + of multiplicity = 2 . Obviously,
RCE) =V .

Lemma 3. The map fi la1 : % — Vv is open
(in the topologies on ‘&; , ¥ induced by their imbedd-
ing into f&' 5 R™+2 respectively).

M.AObviously, it suffices to prove that fo '%1 :

: %1 — V, where ¥ ie the projection (R™ x R? —
—> R™) of V¥ into R™, is open. That is, we have to pro-
ve that given a neighbourhood U of A e €, , for any Pe
e ¥ sufficiently close to p(A), there isa B e U
such that p (B) = P . i

This statement is obvious if A has the real canoni-
cal form; its extension for A not in canonicel form fol-
lows from s (A) = p(TAT) for Te GL(m) .

Proof of Lemma 1. V is &n algebraic variety in

Rm+2 , defined by the polynomial identities P, (.2.1,2-2).—.-
2 2 _
='P,_(.&4,.?\.2)=P:"(1.1,.‘/\2)= 1’2'(.14,.’/\2) =N+ A - 1=0,

where P, (A,,A,) = Re P( A ¥ id,) etc. Therefore,

it can be written as a finite disjoint union of submani-
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2
folds of R™*2  of decreasing dimension,vs‘.":d Y; .

We prove dim V; & m -2 . To do this, we note that
coclim V, = namk, V for any x € V,  (cf.
[3)), where ramby, Y is the dimension of the linear
space spanned by the differentials at X of the polyno-
mials of the ideal associated with V . Since V, is o-
pen in Y it suffices to prove that the set of those x
for which ramk, V' = 4 ie dense in VY .

For x € V, x = (o ,eeey €, , Ay, A, ) we have

df = (..., 2,1, 0, 0) ,

opP/ JE
’ —_— 4
(1) dB = (..., 1,0, 54, ' o,

’

3P, 4P
L] ._.2_ __‘—
df = (.oy 0,0, o, ’oa,

aeat-Nal.e., 0,0, 22, 24,)

and, since

W 0P; OPj ’ ’
4 0.+ 221 a P, -
* T ea, oA, | =2 m,;;:- -2, —‘-”z ]

~ det

OF L. a 2P%1 3. (AP () .
‘- 21.'3.2 o2, +.‘h1 ”13 2 Re P
Thus, it suffices to prove that for a dense subset of V ,

Re (A~1P"(A)Y) % 0 .

It is obvious that the set of those x € V for which
P'(A) 0 isdensein V . If A is reel and A ¢ S,
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P"(A) % 0 , then also A'P"(A) = Re A "P"A) 4 0.

Assume that A is not real, A &€ S and P"(A) % 0.
Then A™'P"(A) = AP (A) = A (A -AITR(A)

?
where R(@,) is real for « real. For €¢ real denote

Plw) = (@-0(@-DR(w)+el= @™+ o, @ ht o, -
.’I’e (@) is real for @ real and (&, ¢,y Cgs Ny N E V.
We have Re (AE)'(A) - Re(AP"(A) = eRa (A (A-A)2]=

=-4e 112-2 . Since both A % 0 and A, # 0 , there
is an &€ > 0 arbitrarily small such that Re[xl’c"(.ﬂ.)J s

% 0 . This proves the density in YV of the set of points
X for which Re (A~T1P"(A)) #% 0 .

Let { be such that ﬂ(JL4)nV£+ﬂ, (M) A

. 4 ‘ .
nVa-,-ﬂ for3<.1,.Since 5,L.).1Va'- is open, M =

o~ - > s 3 y
-@'(V"‘)-aﬁ"(i%V,») is open in M, and, by
Lemma 3, n (M,) is open in V; . From this and the
Sard ‘s theorem ([6, Theorem 15.1]) it follows that there is

a point A € M, at which f¥ is regular. Thus, locally

Al ¢ AY.$)) ie an imPedded submanifold of the dimen-
sion dim M, - dim V;, = dim M, ~m+ 2 . On the
other hand, from Corollary 2 it follows dim ﬁ'-'q(ﬁ X &

ém:-m. Consequently, dim JL4 4am?2_2 , Qe.e.d.
Lemma 4. If A,  + 0 , then codim N = 4 .
The proof of this lemma is similar to that of Lemma 1,

with V replaced by the set W c R™+2 of points

(G oy B 3 Agy, gy )  for which A, = A, +id,,
is a root of P(a)aﬂ"’+¢1ﬁ“" 4+ 4o,
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This is again an algebraic variety defined by the equations
.&1 -3.40 = .ﬂ.z-—.a.20=0,13,(ﬂ4,ﬂ.2) = P2<ﬂ.4,.a-2) = 0 .

The differentials of the polynomials at the points of W

are
JF éP
-1 =
dP, 5 Corns By, 4"911 ’6-11) ,
oP. oP.
= =%
aP, = (“"]L“'O’a.z. ’8.@.2) -
dr-2,)= (.., 0,0 4,0 ),
d@,=2,) = (e 0,0, 0,4 ) .
Obviously, they are independent if A, + 0 . The rest

of the proof is analogous to the proof of Lemma 1.
Proof of Proposition 1. Openness follows from the fact

that both ‘0(,1 and ‘a.z are closed.

For the proof of density we consider the sets
o . ~
‘614 - ‘%2(.2.40 » Ry ) with .2.20 $+ 0 and the space &

of mps F:4imtlIxR2 — U 5 defined by F =

= Fl«'nyt 1 % 2d, Fe ® , endowed with the C™® uni-

~ ~ ~
form topology. Further, we denote by ¥; = 4FIF(I) n

~ -~

.“.‘-‘- a3 for"é‘l'-éfb, %,;-{F
nﬁ1n.a N. = F 1 for 4é1’v‘lo.Since§2

dub-isd1 T 4

IFcn n

né}i-4'-41
s ~
is the intersection of the projections of ‘!’,‘+h taken
over all nonreal £ -th roots of unity, it suffices to pro-
~ ~
ve that ¥, . is dense in @ . We prove this by in-

. . ~ ~
duction showing that every F e "{‘-’ can be approximated

o . ~ ~
arbitrarily closely by an F’' ¢ Y.

Coq ® Without loss
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of generality we assume 1 < 4 < & .

The mep @ : $ —> s given by p(?):f is
a (™ -representation (here and further in this proof we
use the terminology of [6]) and the evaluation map meets
My s transversally. Due to the dimension estimates of .
Lemma 1 and Lemma 4, the existence of the apprcximation
of F not intersecting M,_;  follows from the trans-
versallty theorem [6, Theorem 19.1] and the openness of

~

Y, s Q.e.d.

Denote ﬂ! the subset of ¥4 consisting of matri-

ces having an eigenvalue on S , Again, we associate with

'aa the algebraic variety %3 in & , defined by
~ 2 2
%aaf(A,m,1,A2)lE,(ﬁ.4,ﬁz)- P,_(.]l,',.ﬂ.z) = .7(.1 + .7L2 -4=0%

.4
whose projection is ‘aa . Thus, ﬁa = i‘k‘_J" XX, , where

3(',4 are mutually disioint manifolds of decreasing dimen-

r
sion and U, X

$5 % 4 is closed in ‘EZ; for every 1 -

Lemma 5. codim 364 =3 .

Proof. The proof of the inequality dim x4 = 3

is analogous to that of lemma 1. We only note that the dif-
s o . 2

ferentials of the defining polynomials P, , P2 5 ﬂ: +A, - 1

~  oF m+2 ~ n .
of p(eL,) c R (4L defined as in Corollary 2)
are independent if Re (AP'(A)) % 0 3 it can be shown
similarly as in the proof of Lemma 1 that this is true for

~F ~
a dense subset of fi (‘ug) ;

To prove the opposite inequality assume I = [0,2]

and consider the map F(4) = diag {t,0,...,03% . If
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codirm, x1 < 3 then it would follow from the transversa-
lity argument used in the proof of Proposition 1 that the-
re should exist a small (" perturbation ?‘ of *F no va-
lue of which would have an eigenvalue on S . This, how-
ever, is obviously impossible.

Proposition 2. Let J c I be a closed interval,
Jecint I . Then, for every £ > 2 the subset

1{: (3) € ¥, (J) of all F auch that F umeets &3
transversally (i.e. F meets transversally JC1 and does
not meet JC,; for 4+ >4 at all) is open dense in

‘Yz(J) , and, thus, in ¢ .

The proof is analogous to that of Prcposition 1.

Corollary 3. Given J as in Proposition 2, the set

¥°(J) of maps Fe & such that F(J) n (€L v a,) =

= 0 and ' meets &; transversally over J is re-
sidual in § .

Lemma 6. Let F e & and let A, be a simple eigen-
value of F(t,) , where t, € 1 ., Then there is @ neigh-
bourhood N of t, in I and a unique function A: N —> C
such that J\.(to) = ia and A(t) is an eigenvalue of

F(t) for t « N . Further, there is a nonsingular (%
matrix C(t) on N such that C""FC = B , where the
first column of B(t) is the transpose of
(act), 0,...,0) .

M."ithout loss of gerterality we may assume that
F(t,) is in the Jordan canonical form with 7&0 in the
first column. Choose C(t,) = E  (the unity matrix) and
Cit) = (e, (t),...,e,(E)), A(E) as the solution of
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the set of equations VF(t)c,'(t) = A(t)c, (t) ,

Ci(f)z c‘-'(ta),»i,>4,|c1(t)l =141 (l.] being the
Euc.idean norm). It is easy to check that the Jacobian of
this set of equations at to is not zero. The implicit
function theorem completes the proof.

Remar 1. Under the assumptions of Lemma 6, for A,
not real, starting from the real canonical form of P(fo),
one can similarly prove that there is a C™ real matrix
C(t) in some neighbourhood of t, in ] that brings

F(t) into the form

(B1Ct), Dz(t)) , where B, (t) -(Re .am,nmact)).
0, B,(t) -Im A(t), Re A(t)

Corollary 4. Let Fe &, t, € I and let A, ,---
ooy ﬂ.“o be simple eigenvalues of F(t,) . Then, there
is a neighbourhood N of ta in I and unique C% func-
tions Ay : N —> ( such that A  (t)) = A, and
.2.4 Ct) are eigenvalues of P(t) for t e N . Further,
there is a C™ matrix C(Ct) on N euch that C-7 AC =

=B , where B has the form (B,, - Bz) and B, is
0 , By
triangular with 34,..., Ag ~on the diagonal. Also, the-

re is a real (™ matrix &(t) on N that brings P(t)

into the form (ﬁ“(t) 5 iz(t)) , Where 34 (t) is block
o , Bty
diagonal with blocks as in Remark 1.

Proposition 3. Let F e ¥ (J) for som= £ > 2 .

Then, the eigenvalues of P meet S transversally.
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By this proposition we mean that the functions A 3
defined in Lemma 6 for A, €« S (note that such A, are
simple) meet S transversally.

Proof. Let AcCt,) e S be an eigenvalue of Ft)).

By Lemma 6, there is a nonsingular (” matrix CCt) such
that C™"(£)F(t)C(t) = B(t) , where B(t) has the
form specified in Lemma 6. Denote B(t, (w) the matrix
obtained from B (t) by replacing in the first column
ACt) by @ - Denote by w(t) the orthogonal projec-
tion of .ﬂ(t) on S, @ the Euclidean distance. Since

CIB(t, @(tNC () e @, and X, is open in

~ .
U,, CCCIBLE, @ (ENCCE), @, (8), w,(t)) X, , fort
sufficiently close to t, , where ¢ = &+ 1’.(4,2 . We have

A =1=IA(+) =~ @ (£)] = @ (B($),B(, @ (EMZ [CI?
ICCY Mg CFet), CCIBG, @t e = e, o (Bt 7, )

~
where &,1 > 0 is a suitable constant. If F meets CYC,'

transversally, then obviously 9(?(1:),1&) Zh,lt -t |

dlIA ()]
for some Jt«z> 0. Consequently, T——L’t‘# 0 ,q.e.d.

Corollary 5. The number of such t € J for which an
eigenvalue of F (t) is on S , is finite for every F e
e ¥ ()

Theorem 1. Let J c int I be a closed interval.
Then, the set $,0(I) of those Fe & , satisfying
(i)  F(t) has no double eigenvalue on .S .

(ii) F(t) has no non-real £ -th root of unity as ei-
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genvalue,

(iii) the eigenvalues of F(t) meet S transversally,
(iv) if an eigenvalue of F(t) 1lieson S , then no ot-
her eigenvalue of F(+) 1lies on S except,of its comp-
lex conjugate,

for every + € J , is open dense in & .

Corollary 6. The set & (J) of those Fe o ea-
tisfying (i),(iii),(iv) of Theorem 1 and such that for eve-
ry teJd, Fdt) has no non-real root of unity as eigen-
value, is residual in & .

Proof. Openness is.obvious. From Propositions 1 - 3 it
follows that the set of maps from § , satisfying (i) -
(iii) (i.e. the set V;(J) ), is open dense in & . The-
refore, it suffices to prove that every F ¢ Y;(J) can be
arbitrarily closely approximated by an f’ e 1[:(3} satis-
fying (iv). In virtue of Corollary 4 it suffices to show that
if for some t, : (iv) is not satisfied it is possible to per-
turb F in an arbitrary small neighbourhood N of t, by
an arbitrary small perturbation, without changing it outside
N , in such a way that (i) - (iv) will be true for the per-
turbation of P for every t ¢ N .

Assume that for some t, e J, M pairs of conjugate
eigenvalues a‘; , 3.—; s, a=4,..., R lie on S
(the modification of the proof for the case of some eigenva-
lue being real is straightforward). Let o be so small
that the functions A; , defined by .7|.;v_ » to, @8 in Lemma
6 exist and do not meet S  except at t, and no other

eigenvalue of P(t) 1lieson S on X n J, where
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Kwlt,-x,t,+c], and that there is a (™ matrix C
such that C*'(t)F(t)C(t) = B(t) has the form

Mas Moy s s Pma
B = m gcee0 o ’ Bq
- aﬂ’l [} ‘agz o a&ﬁ ? n*‘

where hé - 1-41-1.03’-2

3 (cf. Remark 1). Choose an

e < f;: . Je real mutually distinct numbers Tgs F= 4yoeey M0

such that lzél< € and a bump function 7%,: N — R such

that 4 (t)=> 0 outside K, g (t) =4 for teKn =

-t~ Z t 4 _‘;.3 , ﬁ’.u) = Aty g ()

2 ¢

By (£) A,y (1) ) Reer (8), Ay (1)

A

Bt) = diag . ,...,(A . B,

{(-ﬁﬂct).&ﬂ(t) R g(8), Ay, 1)/

PCt)s{P(t) for t ¢ K
ceorBeerect) sor te XK

)

It is obvious that P e ¥, and, in KA D, ﬁ’- meets

$ exclusively at the point t, - ¥, . If ©; are cho-

sen small enough, F will be arbitrarily close to F ’
q.e.d.

§3

In [1, 3 21 it was shown that for f € ¥, , each point
of Z \ Z, (such points have been called branching

points) is contained in some set Zp, with £ being a di-
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visor of & and that some eigenvalue of dff" at such

point has to be a root of unity different from 4 .
Theorem 2. There is a subset # of & , residual in

§ such that for every £ e ¥, ,the following is true

for every (p,,m,) & 2, (£), Je Z 4 :

(1) ofy, "’(mo) has no double eigenvalue on S |,

(ii) d'f‘f‘a .‘(mo) has no non-real root of 4 as an ei-

genvalue ,

~

(iii) The eigenvalues of df,” (m) meet S transver-

sally at (n,, m,) .

(iv) If an eigenvalue of d'f'ﬂ'a "’(fmo) lies on S , then
there is no other eigenvalue of d-i'_',_a "’(mo) on S ex-
cept of its complex conjugate.

Corollary 7. For £ e §, , (n,m) & B, (£) can be a

branching point only if one of the eigenvalues of d_fﬂ (m)
is -1 , the other being outside S .

Remark 2. Denote ’2&-,& the subset of 3':““ of tho-

se mappings, satisfying (i),(iii),(iv) for 1 & % &« M and

(ii) with "roots" replaced by " £ -th roots" for 1 & fe & .
Then, fzh‘
Remark 3. (iii) should be understood as follows: If an

is open dense in % .

eigenvalue A, of d'f'ﬂo "'(mo) is on S , then in some
neighbourhood N of (n,,m,) in &, , there is a unique

C"* function A : N—> C  such that A (p,m) is

- 79 -



an eigenvalue of df, *m) for (p,m)e N and

Alp,,m) = A, . This A meets 5 transversally.
Proof. It suffices to prove Remark 2, from which Theo-
rem 2 follows. We carry out the proof for fh = 1 , i.e. we
prove that ful
sion for fh > 4 is similar as in the proof of [1, Theorem

1]-

is open dense for any £ ; the exten-

The openness of ?’M is obvious. To prove density,

assume §{ € 9:” v

pen set U containing x1 (£) such that for every

Then, by [1, Theorem 1], there is an o-

(frg,mp) € W , (i) - (iv) is trivially satisfied.
21 \Nu can be covered locally finitely by a countable
family (W, @ » X ), W, = U = V of cocrdinate
neighbourhoods in such a way that for any KX € P x M com-
pact, W, A K % § for a finite number of o ‘s only and
(W, e * X o) satisfy (iv) of [1, Theorem 1] (i.e.
W“ A 21 is the graph of a ¢*® function P U —> Y.
We show how for any open W, W; c W‘; - U, = 'Y,:_ , £ can
be approximated by f such that # coincides with £ out-
side W, and satisfies (i) - (iv) of Theorem 2 for every
(p,,m)e 2,1 N V/‘ . The construction of an approxima-
tion of £ eatisfying (i) - (iv) for any (p,,m,) € £,
is then standard. In the rest of the proof we drop the sub-
script e .

In the coordinates (fp, m) i (w,y), g=x-x, ¢(n), £
can be represented by

q: = A(uwdy + Y((.L,I’—)

where the primed coordinates are those of the image,
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Y(a,0) = 0, dY(u,0) =0.

By Theorem 1, we can approximate A: w (W) —> o
by a map ﬁ s (u.cu.) —> ¢ such that A satisfies (i) -
(iv) of Theorem 1 on U .

Let 4 : (@ x xX)W)—> R be a C™ bump function
such that ¥ =4 on ((u.x.x)(W’) and ¥ = 0
outside (@w »x x)(W) . Denote by £ the map which
coincides with £ outside W and is given in W by the

coordinate representation
W LA + ¥ (w,y)(Alw)-ACu)Iy +Y(uw,q) .

: . h s 3
If we choose A sufficiently close to A, £ will be arbi-
trarily close to £ and will satisfy (i) - (iv) for every
(n,,m,)e W’ .,
Denote by Y, the set of points (pn,m) e Z, for
which one eigenvalue of d.f@h'(rm) is -4 . For (p,m)e

e Z, denote 4 (p,m) the number of eigenvalues of

d.iﬂh‘(m) with modulus less than 1 .
Theorem 3. Assume » > 2 . Then, there is a subset 3;
of %, , residual in ¥ , such that every £ e &  has the
following properties:

(i) Yg coincides with the set of fe -periodic. branching

points,
(ii) for every (gn,, m,) e Y, , there is a coordinate

neighbourhood (W, u x x), W= U xV of (fn,,m,) such

that w(n,)=0,x(m,)=0, Z, AW=Ux40} and

(a) th NnW consists of two components, separa-
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ted by (ﬂo’mo ); =ll points (n,m) sZ”‘n‘W' satisfy
@w(h) >0 and E, AWuiln,,m,)t isa ¢! (but
not C2? ) submanifold of W

(b) No eigenvalue of [(Z, U Z, )AWIN 4(n,,m,)}

is on 8 jeither W (p,m)= alp, m’)=nln,m")+1 or
hipm)= aip,m’) = h(p”, m”) - 1 for
any (n,m)eZynW, «win)<o0, (p,m’)e Zgqo " W,
(p",m") e B, AW, @win™ >0,

(e) WN(Zg v Z”.) contains no invariant set.

Proof. Again, we carry out the proof for S¢ = 4 , the
proof of its extension for S > 4 being as in [1, Theorem
11

Let £ e ¥,

212
(n,,m,) € Y, , one eigenvalue of df, (m,) is -1

. Then, Y,1 (£) is discrete and, if

eand the remaining ones can be divided into two groups ac-
cording to whether their moduli are <4 or > 1 , the

number of the former ones being % (p,,m,) . Thus,

using [6, Appendix 3] as in [1, Lemma 4], it follows that
we can choose the coordinates ( > Xx) in such a way that

Xz (X, ,x), dmx, =1, dmuys= W (n,,m,) and the

coordinate representation of £ in these coordinates is as

follows:
. 2 3
x1--x1+oc(ux1+/3x4+f-&4 *“’(G";“.',""’z))

2 =Cx +Z(u,x,y,2),

where ), Y, 8 are C* and
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w,Y,Z are C¥ and Y(qu,x,,0,2)=0,2(x,x,4,00= 0,
W, X, 4,2) = 00IxFl+ l@wxl+lglslzl),

dw(0,0,0,0) = 0,
dY(0,0,0,0) = 0,d%(0,0,0,0) = 0 .

We denote by 9:;1 the subset of 9:"1 of those maps
in the coordinate representation (3) of which 3%+ % 0
for every (q,,m,) € Yq (£) . The definition of %’1 does
not depend on the choice of particular coordinates and the
set 5;1 is open dense in %, The proof of this as well as
the proof that the maps of ?;1
does not differ from the corresponding part of the proof of

satisfy (i),(ii) for fe =1

[1, Theorem 3], except of the proof of (ii)(c), where, be-
cause of the possible presence of the eigenvalues of moduli
both < 4 and > 1 one has to use the argumentation of the
proof of [1, Lemma 4].
As a corollary of [1, Theorem 1] and Theoree 3 we obtain
Theorem 4. Assume s, > 2 . Then, for every f € 3'; :
(i) for % odd, Zb is a closed submanifold of P x M ,

(ii) for A even, either Z, is closed and Y*_ is empty,

/2
or Zh‘ is a (7 (but not C? ) submanifold of Px M and

Zh\ Z“ is discrete and coincides with Yk./z .

Remark 4. This theorem corrects the erroneous formula-
tion of its two dimensional version [1l, Theorem 4], in which

the possibility of Zy being closed was omitted.
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