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CONCERNING RESOLVENT KERNELS OF VOLTERRA INTEGRAL EQUATIONS

J. NAGY, E. NOVAKOVA, Praha

In this paper, a class of linear Volterra integral
operators of convolution type is being investigated such
that the kernel of the operator satisfies a certain linear
ordinary differential equation with constant coefficients.
It is shown that for every such operator there exists a
linear ordinary differential equation, describing in some
sense the properties of the operator. The latter differen-
tial equation makes it possible to compute effectively
resolvent kernels of Volterra integral equations.

1. Notation. Let C denote the set of all complex
numbers. Let R, denote the set of all non-negative real
numbers. We shall denote by € the set of all continu-
ous functions f: R,—> C and by € (for & posi-
tive integer) the set of all % -times continuously dif-
ferentiable functions £: R,—> C . Sometimes we write

At instead of € . If x, A4 are integers, 0 <
£n & &, and £ e €™ then the symbol £ “® deno-
tes the: 1 -th derivative of the function f . Especially,
£? denotes the function f itself.
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2. Definition. Let a , £ be two continuous func-
tions. A linear integral operator T: € — € is defi-

ned as follows:

+
(1) Tx(t) = alt) + {b'(t-h)x (n)d s .

3. Remark. The substitution «# =t - 4 in the
integral oj'*lr (t-p)x(s)da gives

(2) ’}b(t —e)x(mds = Lxlt-w)b (wda

and the relation (1) becomes

t
(3) Tx(t) = a.(t)-o-of.x(t—/.,)k(/b)d.b .

4. Lemma. For any non-negative integer % and for
any given functions a, & e f“", the aperator T maps
€® " snte €M, Moreover, for every 4« € ¢ -1

and its image ~ = Tw ,

t
(4) w(t) = a(t) +°J'9'(t-/a)u.(4v)d..o ,
the following is true:
o) N o-g-1) 3) (3]
5.x0) »®@) = Z b O u®t)+ a™ct) +
+ ;f’.b“"(t-h)u. (B)dar .
Proof (by induction). The theorem on differentiation

of an integral with respect to a parameter ensures 't.hat

the function ~ given by (4) is differentiable if o
& « "‘“)

, 4 & € . The derivative of ~ is then
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t
wPt) = L0 Ct) + act) +°f,&“’(t-b)w(¢) ans .

€9 into € ; hence

(5.1) holds. Now, let us suppose that

Thus the operator T maps

fo-2 .
(5.k-1) wr®™(t) = .z LEFD 0y LB (4) +
s
t
+ ") +o.f,b“"’(t A (A d s

holds and furthermore a, & € ‘C"”, w e t™?

. Then the
function 4 =1 g continuously differentiable and the
differentiation with reppect to t on both sides of

(5.k-1) gives

R-2
vR(4) - 420»""5-%0)“‘3*"“) + 20w ) +

t
+ a™t) +0J’M‘"(t —mda (B)d s

Substituting 4+ 41 —> 4  in the last equation (5.k)

is easily obtained.

5. Remark. From (5.k) and (2) it follows immediately

o1 . .
(6.x) ™) = = L®00) D () 4+ a™ (1) +

®)

3
+°fu(f-b)»' (KYd s .

Supposing now a, .« € ‘8"”, bree™ , and using (2)
to modify (4) to the form

t
n ar(f)-a(t)-f-o/w(t-/a).b(m)d»b,
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we obtain from Lemma 4:

o-1 . o
(8.x) ) = 520 w000 Pty + a™t) +

+
+nfu(~)(t-b7b‘(b)db ;

This may also be written, using the relation (2), as

-1 . .
(9.k) r®™(t) = _Zo.w“""'”(O) LP() + a™(t) +
1-

t
+../ L (t-m)au™srdns .

Relations (5.k),(6.k),(8.k) and (9.k) make it possib-
le for the operator T to be conveniently characterized
by certain linear differential operators.

6. Theorem. Let A, A ,..., A, be complex con-
stents and a, & e €™’ . Let & be the solution of

the initial value problem

"
(10) = A, x®= 0, x®0)= M0V = B M0, . n-1.

It w e €™ _ then the function ar = Tu is the so-
: AN

lution of the initial value problem

LA m-1 n
) ™ )
(11) j..%aAh"" -.‘2-'.0 B, (*)1'»?0 A, a™(t) ,

where

n
By .5.5;4-4 A Xy mn
with the initial conditions

(12) v (0)= a 0), »¥(0)= t

i C0) + L o P00+ ... +

+ B w0+ a¥0), =4, 2,000, m=1 .
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Proof. Let

v (t) = alt) + ,f'p(t-h)um)d/. .
Then, according to (6.k), there holde for all integers
O<m=m

j "X | +
) @) o) [
A v ()= Ay fnl“‘if'“ (t+A e (t)+’fu.(t-b)&ﬂr ®)ds.

Hence, summing over all fe ‘s from 0 to m and using the

assumption E. A"ka‘)(h) = 0 , we have
M0 ?
L3 m -1 . "
o, (C2) )
‘z.’Ahar (t)-hz-.'A” ;01;‘_’_4“. (t)+“§oA*‘a. t) .
From the Dirichlet’s formula for double sums we abtain
mn m-1 n m
m) ey o @), *)
“4:.; A..nr (t) ;‘:‘;“’ (f)“gﬁ Ab lr,._'._4 +~§°4~a (t),

which is equivalent to (11).

7. Remark. If the function @ also satisfies (10),
then (11) becomes

- w_ Sy 4y 2 A v
(13)h§°A~np =~§03~“ t}BA,”.‘%M 3 M1 *

Let Theorem 6 be illustrated by two simple examples.
8. Examples. 1. Let a « €Y pe arbitrary and

Bt =p e rp e, B, B, A, 0 eC .
Then L=pB +03,, =3 +2,0,,A, =227 ,
A= = (A + 1), Aym A, Bym=(B 2 +B,A), By= 3+ (3, -

Forany x & €“’  the function
¢ L )
N (t) = a(t) +nf*(/a,e“' **’+/3,. T xman
solves the following initial value problem

4 QA Ve A Ay = A2, @)= (A, 2,)a"(E) +
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+a®(4) = (B A+ By A X () + (B, + 3,) x (%)
with the initial conditions

24(0) = a (0), ry.“:(O) = a0+ (B, +3,) % (0)

2. Let a(t) =;§ a; t*  be an arbitrary polyno-
mial and A (t)= t™1
Then t; = 0 for 4=0,1,...,m-2, & = (m=-1)1,
.A.’ =0 for 3=0,1,....m-4, A =4, B=(m-1!,
B, = 0 for 3 =4,2,...., m -1,

For any x e € ‘™1 the function

*
¥ =at)+ St-s""x)d s

solves the following initial value problem

e () x (8), P02 P0G la;, G=0,1,.,m~1.

9. Remark. Theorem 6 may serve as a useful tool for
the computation of fixed points of the integral operator
(1) or, which amounts to the same, for the solution of a
Volterra integral equation of the second kind. Actually,
a function x € €“* is a fixed point of the operator

T iff x is the solution of the equation

t
x(t) =a(t) +o./',b-<t-/a).x(b)db, t =0

It then follows from Theorem 6 that X aoclves the

initial value problem
mn -«
) ®)
(14) h%o Co % ==, An e (t),

m
Cﬁv-Aﬁ“"i"Ai A%..,,,, h-o,l,.,.,m-'f, Cm_- Am. .

with the initial conditions

'-‘
(15) X (0= @ (0), x¥ ()= = &, , , x™(0)+ a0,

4. 4’ 2’0’-, ﬂ—‘ o 742 -



The two examples in 8 show that the solution of

t A, (t-n) a,t-»)
x(M=alt)+ S(B e +p,e Ixa)ds

may be found by solving the initial value problem

2P (A A +B BT AN A B, +B,2) % =
=2, 4, alt) = (A +1,)aP@) ¢ aP(t)

x(0)= a0}, x(0)= (3 +8,5a.(0) + ¥ (0)

Similarly, the solution of the integral equation
=t i t m-1
X)) = T a. t*s S (t-A)""%(n)dnr
+e0 * 0
may be obtained by solving the initial value problem
x™o (- x =0, xHOmglay, G=0,1,.., m-1 .
n .
Since the kernels of the type & (t¢) -‘.‘E’ B; it
occur quite frequently in many practical problems of the
control theory, an explicit formula for the corresponding
initial value problem is given below.
10. Example. The solution of the integral equation

t . s (t-h)
x(t)-a.(t)+°f(‘,‘.:zvq{3;ea’ dx(a)d s

may be found by solving the initial value problem (14),
(15). The numbera A, in (14) are now the coefficients
of the polynomial

= = s

=
A=A

~
(A - ;) .
It is known that the coefficients A,,, may be expressed
by the roots A. aa follows:
_A”t =1,
)
A"‘"'- Sl 4"632.-41. a""v a"n"’ a"u y 4,2, ;.

% <dg<nciy
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The numbers & = a”®(0) in (15) are gi-
2

ven by the relation

it Y
by = Z B, oe0,4,..,m-1 .

11. Remark. In the analysis of a linear integral
equation
(16) x(¢)= a.(t)#-.ftb‘(f-b)x(b)d-}b
a very important role is played by its resolvent kernel
%X given as a solution of a linear integral equation
an n.ce)-bct)+°f’1rc¢-nno.>da .
It is well-known that if a function 4 is a resolvent

kernel of Equation (16), then the solution x of (16) may

be expressed as
t
(18) x(f)=a;(t)+‘flbft-h)a¢(b)a£/> .

Since the resolvent equation (17) is again a linear
Volterra integral equation, Theorem 6 or its modifications
in Remarks 7 and 9 may be applied. Thus the following theo-
rem may be formulated:

12. Theorem. Let the function & e €" be a solu-
tion of the equation “g‘ Ay x™ = 0 . Then the re-

solvent kernel » of the equation (16) satisfies the ini-

tial value problem

(19) u'%o c““ L 0 > c*- A.u-",. +1Ai ‘b;'h-1 2
a‘.- 0,4,:.., ﬂ"" cﬂ.’ ‘A'm ?

with the initial conditions
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. 2
(200 x9%0) =2, Y A0, 320,40, m 1,
where ~“"(0) = 4 .

13. Remark. It may be seen that finding the solution
of the initial value problem (19),(20) for the resolvent
kernel is easier than solving the initial value problem
for the solution of Equation (16) itself. Moreover, if the
resolvent kernel x4 of Equation (16) is known, any solu-
tion of Equation (16) with an arbitrary right hand side

a(t) 1is found by integration using Relation (18). On
the other hand, when using Equation (14), the correspon-
ding particular integral of this equation has to be compu-
ted for each particular choice of the function a (t) .

Now, let us apply Theorem 12 to find the resolvent
kernel of the integral equation from Example 10.

14. Examples. 1. The resolvent kernel of the linear
Volterra integral equation
(21) x(t) = alt) +°ft(;§: n; ea&“%)) x(n)dns
satisfies the initial value problem (19),(20) with the
coefficients A.” &,  described in Example 10. In a
special case, e-g. for m = 2 , the initial value pro-

blem has the form
(22) P (A, +A,+ B+ B) XD+ (A, N+ BN+ B, )k = 0,

x(0) = (3, + 3, XP(0) = (@3, + 3+ B2+ B2y

Let @,, &, be characteristic roots of Equation (22),
“, = @,’ . The resolvent kernel A is then
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t
n(t) = K, e + K, e“

with
1
X, = =y LB+ B+ B A+ By Ry = (B+3) % T 5

4
K,= Frgsymy LB+ B, = (B + B - By 2=y Ay 1 -

In the special case X (¢)=1- et which often
occurs e.g. in the theory of phase controlled oscilla-
tions, the resolvent kernel is obtained as the solution
of the initial value problem

2P X x = 0, x@=0, x0)=1.

. - -
Setting 4y = 4; v sy = Zﬁ

nel 2 of the integral equation with the kernel & (t) =

the resolvent ker-

t

=41-e has the form

1 eyt e,t
nit) = —= (e - e )
3
2. The resolvent kernel x for an integral equation

n .
with the kernel fr(t) '425 a;t* wmay be found as the so-
=

lution of the initial value problem (19),(20) as follows.
The polynomial R is the solution of the differential
equation x®*" = 0 . Thus Ap,=1, Ay =0 for
Mow0,4,0,m, Ly = R!ag for k=0,1,..., m .
Hence, for the coefficients Cq ©f Equation (19) we ob-
tain

‘ [ 2
Cai4, c).-AA-Loq-iggAawi-ﬁ.é"j_‘-—&q,_(h_;“!%.q
for v =4,2,..., m+41 .
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Thus the resolvent kernel solves the initial value pro-

blem

m+1) m) m=1) )
x -a,x™ - a,x —vve=(m=-MNla, x"-mla x=

=0,

) i . .
2P0 = Z G -MIlay x®1%0), 4=0,4,2,...,m .

3. A procedure similar to that described above leads
to differential equations for resolvent kernels of inte-
gral equations having kernels of the type ) =P(t)e™
with P(t) a polynomial of the degree m - 4 . It is ob-
vious that the function £ is a solution of an ordinary
linear differential equation of the order m with con-
stant coefficients

S e Erat et s 0,

with A  the characteristic root of multiplicity m

Hence

o . :
Ag o= GO EA™ & - M0 = 2 (2 PR A%,
v m ‘
C,= (=D (Trat-
% gy ik B ey oo #
Z AR E e 0 a

Now, substituting these values of the constants C,, -
&, into (19) and (20), the initial value problem for
the resolvent kernel is obtained.

15. Remark. The method described above leads to al-
gebraic equations, whose roots will eventually have to be
computed. Here we meet with the same difficulty as when
using the Laplace transforms. Notwithstanding, in several

special cases our method is more convenient and the pro-
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cess of computing the resolvent kernels is very simple.
The procedure just described may be modified in many ca-
ses in a variety of ways depending on the special form
of the kernel. One of such modifications will be shown
in what follows.

16. Example. Take the same kernel as in Example
14.3, that is, & (t) = P(tre?t and the resolvent

equation in the form
at * as
(22) n(t) = P(t)e™t + Eof/o(t-b)P(b)e ans
where ¢ may be either 4 or -1 . Setting (t) =
- (t)= em(t),w(t)ca.(t)-]’(t)e” into (5.k) we obtain
ST . - +
A% - e 3 %00 (P) M Pr (P1) EY s’fm“'%t-uroa) in.
"

Denoting 2°"(0) = € and introducing the abbreviated

notation n’(Q) = Kk, for 3 =-1,0,1,2,...

& .
Hy(t) = € = x™4%0)(P(t) &**)¥
=0

we have

o 5 . é
4+ Q) 2 o At
Hy(t)= e, 2 na s, ,_;:_oc 2) PR (t)aFte™ -

ow,,, = 3y g3t At
s"gr cf>4§~.~’._‘(%m e

S o ot
P*(¢) vy .
e -Eo—-!—— i‘% 1(9- 4 ).._(’-z.f 4)”,*

'a.“e"t-

~ PR (4
t’%}’_ﬁi’_ 0¥ care® ,

where
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(23) G (A)= §7C1) -5_% goa 2 a;:’c'm-é_% 3G-1.

e alGaqe I ng 54 2%
Clearly, the polynomial 0.::"(2.) is the g -th deriva-
tive of the polynomial Qk(.&) . Thus the fo -th deri-
vative of both the sides of the resolvent equation (22)

may be written in the form

«@) ®)
® & PRt) By (A)  at
(24.%) n(E) = ‘z?o 2! e

t
+ e/ a™(t-n)P(n)eM™dns .
)

*

17. Remark. Equation (24.k) appears to be a very use-
ful tool when investigating the various qualitative and
quantitative properties of derivatives of the resolvent
kernels of Volterra integral equations having kernels of
the form P(t)e?® ., One illustration of such appli-
cations is given in the next example.

18. Example. Let us investigate the following pro-
blem. Does there exist a polynomial P(t) = a,+aq,t +...
ety g1 of the degree M — 4  such that the
resolvent kernel »x , corresponding to the Volterra kernel

P (t) = Pt) ™t , will also be a polynomial of the same
degree? We shall find the conditions of the existence of
such polynomial. Since x is required to be a polynomial
of the degree S -1, its S -th derivative has to be

identically zero. Since the function n®?

is a solution
of Equation (24.k), the following must hold:
& PRct) @R (a)
¢ = #f" et
220 e

=20 .
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Hence all coefficients G“:’(.ﬂ.) for @ = 0,1,..., o =1
have to be zero. Thus A is the root of multiplicity
A& of the polynomial Qu (A) . Consequently,

Qb(.x)-e.(a(-.l)" . Comparing this with (23) we obtain

[ S . o
o § ) )b-; -5 7
Q"Cx)=£(x~a) = 565(5)(-4 x* A 355“_’._'0( >

so that

Rajr ™ eI AN, G201, e

Setting « = o =4 -4  we have

Ic‘& = (-1 )‘;’4 e (i-':'4 ) A"“ .

. K . -
Since the number —1‘-7— is the 1 -th coefficient of
the resolvent kernel A , we have finally obtained an ex-
plicit formula for the resolvent kernel
-1 . <+1 .
+41 i A +
»(t)-i.za( 1) 5(44-4)77—1; .

P4 ¢0)

Now, the coefficients a; = T

of the polynomial

P(t) remain to be found. Equation (22) may be rewrit-

ten in the form

t
PCE) = x(t) et sd.rm(t-,s;a“‘“*’r(md.o )

According to (5.k), the A -th derivative of P(t) is
M1 - .
PM(4)a - ¢z, PAFP00) k(1) &™) F 4 () e AH)M _

- .s‘/’uu-»)a““""r“"(a) ds.

Setting

Pujo for POV, 5204, ko1, PP0)a R = -2,
we obtain ’
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~ o
~at (3
H"(t,a)- - eé,ZoP&.-gw (e (t)e **)

) * . " )
= - 2R (3) ARty ay e M.
F 3 kY

o ® 'S .
o B T TN v lGg e DGy RN

T g0 ! 3=
o (3] ~
- - 3 T q:ﬂ’c-an'“* ,
g_.o Q’!
where
B ) =89 = S -0¥p, . a?
(25) Qh(- = Ve -3.--0 &'-9'_4 4
and

02 x) = 9%. GG 1) (4-q+ 1) Py )%
which is the g -th derivative of {, (-a) ,

Since P(t) is a polynomial of the degree . — 4 5
necessarily P™’(t) = 0 for all ¢, and hence, similar-
ly as above, ﬁ*f”(-n) =0 for all ¢ = 0,1,...
wiyR =1, Thus -2 is the root of multiplicity A of the
polynomial 5.“ (-r)

Hence and from (25) we have

gk JEPI L

y by ki 5 i
354:_0 (- E)(? dA x -é=Zo Pﬁ.-a’--‘I X ’

and thus
Ph-éwf = - £ (?) Ab-,

Setting 4 = . -4 -1 , we obtain
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Aiq-‘f
i! ‘

P; s
a, = <4 = -e (L)

In this way, the following result has been obtained: for

each kernel of the form & (t) =P(t)e??t with P(¢) =
a-1 o 1&’-4

= - e"go Cive? =7 t* the corresponding resolvent

kernel A~ is the polynomial

= . 11'.4-4 o
- — Ay » AN,
r(t) = 54‘.20( 1) (1"-4-4) 27 t .

Katedra matematiky FEL CVUT
Technické 2, Praha 6-Dejvice

Ceskoslovensko

(oblatum 30.6.1971)
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Commentationes Mathematicae Universitatis Carolinae

12,4 (1971)

ON THE CONVERGENCE OF SEQUENCES OF LINEAR OPERATORS AND
ADJOINT OPERATORS

Svatopluk FUCIK, Jaroslav MILOTA, Praha

1. Introduction

Let X and Y be two Banach spaces with the norms Il . 'x

and .\ respectively. X¥* (resp. Y* ) denotes the ad-

’
Jjoint apa:l:e of all bounded linear functiornals on X (resp.
on Y ). The pairing between x* € X* and xe X is de-
noted by < x, .x')x (analogously for g*e Y* and Y e
€Y ). We shall use the symbols —=—> , %> ¢4 gdenote
the strong convergence in X and the weak convergence in
X , respectively. If £ (X,Y) is the space of all boun-
ded linear operators from X into Y then the convergence
of a sequence (A, ) c £ (X,Y) can be considered in
various meaning. We shall consider the following types.
Definition 1. Let Ae &£(X,Y), (A,) c £(X,Y).
Then
(i) CA,) is said to be converged to A if A,,,.x—z-’ Ax
for any x € X .
(ii) (Am) is said to be continuously converged to A if
Aﬂx”-—}’—> Ax - for eny (x,)c X, X, —> x .
(iii) (A, is said to be weakly converge’dgto A if

AMS: Primary 47A05, 47D15 Ref. 2. 7.972.53
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Aﬂx—y—-‘ Ax forany x € X .

(iv) C(A_) is said to be weakly continuously converged to
A if A,n.xw—y—* Ax for any (x,)c X, x,,‘_-—x—‘ X .

The convergence of (A,) to A in the meaning of (i)
or (ii),(iii),(iv) is denoted by A, —> A or Aw—c—> A,
A,— A ,Am,——c'—“A , respectively.

The relations among these types of the convergence are
examined in Section 2.

Let A* denote the adjoint operator to Ae £ (X,Y),
i.e. A* is such an element of &£ (Y™*, X*) that
CAx, 4% ) = (x,A*4*> forany xe X,y e Y*.1t
can be shown that A, —> A does not imply A —> A*
(see Example 1 in Section 2 or Yosida [43, Chap.VII,§ 1,
Prop.l). In Proposition 2 and Theorem 1 we shall give the
sufficient and necessary condition under that A’,',“_—-> A*
The special case of operators with norms equal to 41 is
given in Theorem 2 and in its Corollary. Solving the prob-
lem when the convergence (i) implies the convergence (iv)
for any sequence (A, )c L (X,Y) , we obtain a new
characterization of Banach spaces with finite dimension
(Theorem 3). The convergence of adjoint operators is impor-
tant for instance in the case that X =Y and (A, ) are
projections (i.e. A?» =A, ), A=1 (1 daenotes the iden-
tity operator) - see e.g. Browder [1]). Except rewriting
the main results of Sections 2 we shall give the conditions
for the convergence of adjoint projections in the sense of
(i) in Definition 1,in Section 3.
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2. The relations among various types of the convergence

Two relations are obvious, namely A, —> A ox'Am'—g—‘A
implies A“—‘A

Propogition 1. A, —> A  if and only if A,,;g'> A.

Proof. As from A,w—c—> A it obviously follows that

A,—> A , we have only to prove ‘he necessary part. If
A,—>A , then, by virtue of the Banach-Steinhaus thec-
rem (see e.g. Yosida [4]), there exists a positive number X
such that A | = K for any positive integer m ., Let
now xw—x—) X . By the triangle inequality, we have
NApXp = Axly, & Khx, -l + HA, x-Axl, .

It follows that A, —> A .

An analogous statement for the weak convergence does
not hold as it will be shown in the sequel. The following
two statements make clear the notion of weakly continuously
converging sequences.

Proposition 2. If AX —> A*  then A,,,,—-‘:—* A.

Proof. Let (x,u) be such a sequence of elements of
X that .x”i‘ X and let g% € Y* . Then

CAL X, ™), = (0 AL 40— (x, A%y *) = CAx, 4™,
because Ak 4* X2, A*y* . Therefore A<~ A .

Theorem 1. Let X be a separable and reflexive Banach
space and let<Y be a Banach space. Ther from A.,,,_-c—‘A
it follows that A* —> A* .

Proof. According to Kadec [31] theré exists a norm
i+ Wy, which is equivalent to the norm Hl + lyx gene-

rated by the norm |l . llx in X eand which has the following
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property

»
(B) Ir w2 X xR, Wk W —> WxF N,

x*
then x} —> x* .
The norm Ml - Wl 4 on X generates the new norm

M. mx on X by the relation

Wxm, = nup <x, x*>, | for x € X .
M x* .)(“4
The norm Il « le on X is also equivalent to the previ-
cus asrm H . lx .Let now A £s A . Then A, ~=> R
and therefore, by using the reflexivity of X , also
A% — A*, if 4*e Y* then
* ) x % .
WA*y™ M, & %:l«f AL o™ My u

By virtue of the Hahn-Banach theorem, there exists a

sequence (X, ) of elements of the aphere

S=ixeX,x =1% such that
W Aﬂ*‘_ '9* lllx,. = <¥“,A:"y'*>x = <-Am,xm,’ "'*>y L]

As X is reflexive, the sphere S is relatively weakly se-

quentially compact (see e.g. Day [2]) and therefore there
X

exists a subsequence (x"‘l&) of (x,) such that X, —> X €

e X . Putting T, = X and %, =X for m = oty

Tt
we have

] A’n** mx,‘ & ll;/”m-’lgvf NA:’** llx:t =
m

[ s E ]
= dim imf <A, o4 >y £
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£ Lim nf <A
& -y co e

= CAx,y*)y = <x, ATgTO, £

Ry s B Oy = o Ay 2 40y =

M x il . M A%Y* N, & WARG* Ny

Hence

MA* ¥ N = timinf WAL g N

'Ye shall now prove that also

H|A*/”,* NX,‘ = Am sup i A;'fv* lllx,‘ .

Mmoo
A : : ’ * ok
If it is not this case, i.e. Lu"rtn_’ro:fb WAZ 4™ My >

> A*nt* mx* then there exists such a subsequence

(mh) of positive integers that

HA* g R, < dim WAL 4% My, .

By the same manner as above we get the contradiction.
-
Summarizing, we have AX ty,"'—x—‘ Argy*
and I A’:‘ q.* lllx, —> Il A* fy-* m-x* and thus, by the

validity of Property (P), we obtain that

WA%D 4* ~ A*4* N —> 0 . By using the equivalence
property of the norms |l - !le* g b “X* , it is A% >
—> A* which was to be proved.

Remark 1. We have heard that S.L. Trojanski proved
that the Kadec theorem takes place in the case that X is
reflexive and not necessasrily separable (to appear in Stu-
dia Mathematica, vol.37). Therefore, the assumption of se-
parability can be omitted in Theorem 1. We shall use this

remark in the sequel.
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Corollary 1. Let X and Y be two Banach spaces and
let X be a reflexive space. Then the following conditions
are equivalent:

(1) AR —> A*
(11) A% —> A* .
(ii1) A,—~~A .

(iv) (WA, ) is a bounded sequence and A:,ai*‘—x-: A‘q*
for y*e P* where the linear hull of P* is dense in Y*.
Proof. The equivalence of (i) and (ii) is stated in
Proposition 1, the equivalence of (i) and (iii) is proved
in Proposition 2, Theorem 1 and Remark 1, the equivalence

of (i) and (iv) is the Banach-Steinhaus theorem. ,

Corollary 2. Let X and Y be two Banach spaces and

let Y be a reflexive space. Then the following conditions

are equivalent:
(i) A@-—'> A .

(1) A,—> A .
(111) A% S=~A*

(iv) (B A, ll) is a bounded sequence and A, X - &9 Ax

for X € & , where the linear hull of D is dense in X ,
The following example shows that there is no relation

between A, —> A end A:v'—" A* even in the case

of projections on Hilbert spaces.
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)
the Kronecker symbol) and an, be the orthogonal projec-

Zxanple 1. Let X w Lz, e,= (J;

im (d:'«m- is

v
tion onto X, =Lim(e,,...,e,) ( Lin stends here for

. +29 2
the linear hull). For X -*E §,e; € £° we put TpX =

= Enes €ttt §an©, ©8nd @ =P + T . Then
Q;: @, ,i.e. @, is a projection onto X, 8,—1
( I denotes the identity operator). From e, —> 6 and

c 3
6, e = e, wesee that & ——> I  and, by virtue

m Cmaeq 2]
of Proposition 2, the sequence (Q;‘L) does not converge

to I*, One can easily show that @% X —> X if and on-
ly if x = 0 .,

Remark 2. Example 1 shows that A, —> A  does not
imply A.“-L\A .By the same manner ( &7, <~ I* a8 it
follows from Corollary 2) Am_—s'—'“A does not imply A,—>
—> A . Especially, A, —> A does not imply Am,-c—‘ A.

Theorem 2. Let X be a reflexive Banach space. Let the
norm Il - Byx on X* generated by the norm 1.1, on X
have Property (P) (see the proof of Theorem 1). Let (A,)cC
c&£(X,X) be such that # A =4 and A,—= I . Then
AY— I,

Proof. By the reflexivity of X , from A — 1 it
follows that A% — I* . It is

* . * . P *
Ix*l , € f:xz&fl.ﬂmx ﬂx*émwﬂAﬂ’x b € 00

for all x* ¢ X* . Therefore WA} x*lx,.——> 0 x* 0.
and, by virtue of Property (P), A:p——) I
Corollary 3. Let X be a reflexive Banach space. Sup-

pose that the norms - x and . | have Property

X%
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(P). Let (A, ) be a sequence of elements of &£ (X, X)
such that KA, 1 = 41 . Then the following conditions

are equivalent:

(1) A, I . (ii) A,— 1 .

(iii) A, S=7T1 . (iv) A, — I .

(v A* £ ¥, (vi) A% — I*

(vii) AR == It | (viii) A% —s I* |
Remark 3. Example 1 shows that there exists a sequen-

ce (A,) such that A,—> A and A, A. Since in
the space L‘ the notion of the strong convergence and the
weak convergence of sequences are the same, we see (from
Proposition 1) that for any Banach space Y and any (A,)c
c L', Y), A,—> A, itis Ay —=— A . The next
Theorem 3 says that in the case &£ (X ,Y) where X is a
separable and reflexive Banach space, this is not possible.
Theorem 3. Let X be a separable and reflexive Banach
space and let Y be a Banach space. Suppose that for any se-
quence (A ) c £(X,Y) such that A, —> A it
is A,,L—c'—“ A. Then X is a finite dimensional space.
Proof. Suppose that X is an infinite dimensional spa-
ce. Let (X, ) ¢ X be such a sequence that Lin (x,,..) is
dense in X . We denote X, = Lim (x,,..., X, ) . Without loss

of generality we can suppose that X, § X for any

@1
positive integer m . It is easy to see that q X, = X.
mes

We define by induction a sequence (g,w) such that Ileﬁllxg»{

- 760 -



a i
and e ,..., e, 2

for each y e 'xn-q and any integer m . (The last inequa-

is a basis for X, andle, -4l =

lity can be guaranted for instance by using the F. Riesz
theorem - see Yosida [4],Chap.III,§ 2.)

According to one corollary of the Hahn-Banach theorem
there exists a sequence (£,) c¢ X* such that
<o, 8y 0y=d ,i=1,..,m and £, 0,4 & 2 . 1Itis
easy to see that £ z, fﬂ)x ~—>» (0 for any z € X ., We
put 4, e Y, g, #+ 6 and we define

Ay 2 —> <2,£, 5,

for any z € X and any positive integer m . Then Aﬂ—b /]
(® denotes the null operator). By the assumptions of the

reflexivity, there exists a subsequence (e, ‘) such that

X
g 2o Bt Anglmy = COuy, Sy dyapy map—+= 0 .

It shows that A.,»‘—c-l'—> (0] , which contradi;:ta the assumption.
Remark 4. From the diacuaaioh of this proof we can con-
clude that the statement of Theorem 3 is true if X is a
normed linear space with a separable and reflexive subspace
of the infinite dimension and on which there exists a boun-
ded projection P . For, if E is such a subspace, we defi-
ne(A,) onE as above. We put B, x = A, Px for xe X.
Then B,—> @ and B,,L-si—¥ ® . Unfortunately, we do not
know what normed linear spaces have this property.
Corollary 4. Let X and Y be two separable and refle-
Xive Banach spaces. Suppose that for any sequence (A,) c
C ¥£(X,Y) such that A, —> A it is A, ,——> A, Then

X and Y are finite dimensional spaces.
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Proof. By virtue of Theorem 3, X is a finite dimensio-
nal space. Using Corollary 1, Corollary 2 and Theorem 3, we

obtain that ¥ is a finite dimensional space.

3. The convergence of projections
Theorem 4. Let X be a reflexive space and let (P, )

be a sequence of commuting projections on X, i.e. (B,) c

c¥(Xx,x),P;=% ,P . P =P P

maeq ‘m maq anc let
PesPn=F, ,ie. P,(X) c P, ,(X) . Then the fol-
lowing conditions are equivalent:

(8 Ro—=l..
(i1) P*—1%* .

Proof. We denote F, (X) by X, and B* (X*) by
Y} . By the commutativity of (P, ) and X, c X

have Y,:c Y:+1

vex subset of X*, Now, we can use the Mazur theorem (see

me , We

. Further Y* -"Bﬁ Y,* is a closed con-

e.g. Day [2]) to get that Y* is also weakly closed. If
(i) holds then P} —> 1* which shows that Y* is a
weakly dense subset of X* , Therefore Y* = X* .From the
assumption (i) it follows that (NP, ) is a bounded
sequence and thus (N P* l)  is also bounded. By the Ba-
nach-Steinhaus theorem, it remains to prove that 1?,’: x*—
—> x* for any x* cmg Y, . Butif x*e Y then
P*x* = x* forall m 2 m, .

Corollary 5. Under the assumptions of Theorem 4 the
following conditions are equivalent:

) 2,— 1 .
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(ii) P2 — 1* .
(iii) P, S~ I .

N » [4 *
(iv) % = I
Remark 5. The case of noncommuting projections will

be obtained from Corollary 3.
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