#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1971
PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012 |log62

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

Commentationes Mathematicae Universitatis Carolinae

12,4 (1971)

THE NONEXISTENCE OF A WEAK SOLUTION OF DIRICHLET'S PROBLEM
FOR THE FUNCTIONAL OF MINIMAL SURFACE ON NONCONVEX DOMAINS

V. SOUCEK, Praha

§ 1. Introduction. In this paper, I will be concerned
with the problem if there sxists the minimum of the func-
tional

Qw) = SA+ TVal*dx

on the set of functions & e W:" o, ncE, with
the boundary condition @ ¢ C(4N) . '

It is well known that we have the existence theorem
for a classical solution of this problem only if the do-
main 0 is convex, for all nonconvex domaina () we are
able to find @ e C (92) such that there exists no
classical solution of this problem ([1]). In this paper, it
will be shown that the situation ies different for weak so-
lutions:

1) If almost all points of the boundary 9. are con-
vex points (Def. 2), then there exists a weak solution for
all @ e C(8) (see § 3). An interesting situation
is, for example, in the well known classical counterxample

of ' T. Radd ((4],p.204). There exists a classical parametric
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solution, but this solution has no singlevalued projection
onto (X ,4)-plane. There exists a weak (nonperametric)
solution & € W:’"( o) which is even from

CP(0)A CCIL N 4S}) (where S is the only noncon-
vex point of L. ). These two solutions are different. I
mean that the Radon’s example is in fact rather a counter-
example of regularity of the solution on the boundary 80
than the counterexample of the existence. On the other hand,
the example of Bernsatein ([4],p.201) is indeed a counter-
example of the existence of the solution.

2) If the nonconvexity of the boundary AL is es-
sential (for example, a part of the boundary is a part of
the circle which has a positive one-dimensional Lebesgue
measure), then we can find a boundary condition @ & C(811)
such that there exists no weak solution of our problem (see
§ 2).

Remark. There is a possibility to extend the functional

® on the larger space of functions, the space W(g)(ﬂ) o
> Wf’ (L) and ask for

“%,(mé(u); gel, (80) .

thau =g
Then we have an existence theorem for this ultraweak solu-

tion for each domain S (also nonconvex) with the C-

boundary and for all @ & L,‘ () (re1,c31.

§ 2. Nonexistence of the minimum.
Definition 1. Each function « € W;‘" () for
which
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mum ¢
Pu) = e W4"’(m Q )

¥~ € W)
holds, will be called a weak solution of our problem.
Theorem 1. Let N e Ey be a bounded domain with
the Lipschitz boundary, let “,, 4, be two weak sol‘u-
tions and let

w, (x) & u, (x)
a.e. on O (in the sense of traces).
Then
44,1(«) £ ,u.z(,x) a.e. in L .

Proof. There exists a measurable set 1, ¢ L such
that

(X)) < uz(x) a.e. in QN O

?

Mq(x) > wu, (X) a.e. in .D.o ‘

We can define the functions

Uy (X) = mim L, (x), w, (X)1

a, (x) = mar Lu, (x), sy (01,

then from the Beppo-Levi definition of the space de(.ﬂ.)
it follows that 4 w, e de n) .,

3
From the inequality a, € “w, a.e. in 9 we
have Ay = ALy oy M, = u, a.e.in 90
Then
®(uw,) = PCu,)
i.e.
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n.'ﬁ VI+19u,ldx + JA+ Ve 12dx <
‘n, o5 ]
&S ViV, 12dx + S VI+ 1V, tdx
-, 1 oo 2

and
Q(u.,_) “ Q(“ﬁ,) ?
i.e.
2 2
n.llx‘l,“""vu'll dx +£.\M+IVM.,I dx &£

& Lo VT Vagl2d + J A+ TVa i d

From this we obtain

n{\/4+ivu411dx & VA TVu,]?dx ,
VTF TWayltdx & JVI+TV0,Pdx

hence
Pluy) = $(a,) .
The functional ¢ is strictly convex on {u e V{,‘”(.D.),
w-u 6 'W:“ i hence

u-s(.x) = u?(a() a.e. in L .

Leupa. Let w & C®@(n) A CCR) be the classi-
cal solution of the equation of a minimal surface in L c

c E,_ . Then & is a weak solution (of our problem) over
v )

Progf. If a e C® (M) then the assertion of this
lemma holds because the functional ¢ ia continuous and
convex on W:‘"(.ﬂ.) . There exist the domains ‘Qi 5
7 =14,2,... such that
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oo
a2, ca; Dyecy,, ;5,00 -0

and a:é‘d,s are uniforuly bounded.
The function wln’,_ is a classical solution in
,W1"’(_r)_é) , hence the apriori estimate (see [4])

I{‘VH- IVal*dx 4 meas (.ﬂ.#) +£n.4 lwlds £ X

is valid, where X is independent of 3 -
By the limit 4 —> oo  we obtain

h/'}'1+lv4,,|"d.x < + o0 ,

hence w e W:'“’(.ﬂ.) . Because ® is continuous and
convex on W;“’ (L) , we have that .« is a weak solu-
tion over W () . @.E.D.

. If the function 4, from Theorem 1 is a special au-
xiliary minimal surface, for example,

u,(x) = =R . axccorh M, IxIZR , xs E, ,
we can prove then another maximum principle; we can suppo-
se that the inequality “, < 4, holds only on some
part of 0fL . This allows us to construct a counterexam-
Ple for some nonconvex domaina £ - to take such a boun-
dary condition @ that there exists no weak solution of
our problem.

Theorem 2. Let ) < E, be a bounded domain with
the Lipschitz boundary, let I‘(xo) be a part of the cir-
cle K(x,,R,) =, {x6E,,lx-X,l=R,3, 1ot which
have a positive one-dimensional Lebesgue measure, let all

points fL be outside of the circle X (x,,R,) and
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80 n K(x,,R,) = T(R,) ;

let us suppose that there exista d > 0 such that the
open set

Do =ixe N Ix-x,1 >R}
is the domain with the Lipschitz boundary for all R e
€ (R, Ryo+d) .

Further let
(1) w4 (x) be a weak solution over Wf”(.ﬂ.) A
(1) a(x) £ - R, axccorh '—’i—]‘Tﬁ—' a.e. on
o
9 - TI'(R,) ,

(1ii) there exists ¢, > 0 such that lu (x)| < ¢,
a.eé. on P(Ro) .

Then there holds w (x) £ 0 a.e. on T'(R,) , hen-
ce
“(x) € = R, ancecosh l—x—i&l— a.e. in Q .
‘o
Proof. let us denote (for R e« <R,,R +d > )
PRY=4{xe); x2+p3’=R1,
R, = mup fR 3 T(R) 4 0}
and

yK(t)-—wah%

forall 4= R >0 .
By Lemma the function
Tx) = g Ux =%+ ¢,

is a weak solution over W: (L), wehave & 4« n
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a.e. on 9 , hence from Theorem 1 it follows that
a(x) £ m(x)

a.e. in £ and we can define the reasl function
Y (R) esds u (x) ; R, £ R<R,+d
T el > e ° ’

where i, (Xx) is the trace of MIJLR on
I'(R) (I'(R) c an,g .
It is sufficient to prove that
(1) w&(x)eygo(l.x-xol)so
holds a.e. in I'(R,) and then to use Theorem 1.
Let us assume, on the contrary, that
Y@®,) >0 ;
then we can denote
€ =

-

7 ¥Y(&) > 0.
There exists J" > 0, " < d  such that for all R e
e <R,,R,+o>, pe<k X )

(2) i@l + e 2 g (@)

holds.

Part I: Let n, € (R,, R, + J") be fixed; we will
prove that

¥Yin,) « e .
1. From Lemma it follows that the function
M,(xX) = Pr, Clx =X D+, y o = ¥(R) >0
is a weak solution over WS (), it is clear that
Mo (X) =2 w(x) a.e. on T'(R,) ,
Mo (x) 2 Dro (IR =X,1) 2 s (x) a.e. on 9N ~T(R),
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hence from Theorem 1 we have
N,(x) 2 u(x) a.e. on 02

and also
(3) ¥Yip) « 97.’(@) + Ay

for all ¢ & <R,, R, > .
Betause
d (o (p)] = -
E-,; Pro (% - 4)’/’.
: R

'®
we have (see the figure)

Y(R,) A=[R,,¥(R,)]
Dy = [xys 41
£ T
NN > [ny, ‘]\‘p%(p»y,
@)+y,
ﬁ\
0 -

' IR, oy TN X9

the graph of the function P, (p) + o, on <R,, c0)
is beginning in the point A , there exists x, > R,
such that the graph of the function 9'.(9) + 4, in-
tersects the halfline AB in one point D, = [k, , 4, J,
where

(4) Y4y = Ty, )+,
and in (R,, x, ) thomphoftbctunctionqlofp)«fn‘

- T30 -



lies more below than the halfline H .

a) If %, Z n, , then clearly

H
P, o)+ ¥, < €

and from (3) it follows

¥in,) € €

what we want to prove.

’
b) It K < x, ,
2. The function
m, (x) = 9,‘1(“( - X, 1) + oy

is by Lemma a weak solution over W: (2,), from (3),
(4) we have

¥(x,) ‘qlt,(”"i)""% -y = 9"'1“') +
i.e.

then we will do the second step.

alx) & n (X)) sec0n I
and by (2) we have
u(x)Gg:&(Ix-xol)éAg%(lx-x,l_)-r e<g (lx-x,Dryy
a.e. in {X €N ; Ix-x1 2 »n, 1}
Hence fr:l i'hoorn 1 we have
wlx) & g (x) a.a dnfxeR,lx-%1>2%,

i.e.
(5) Y(g)éq:q(p)-c-ah, ee<x,R > .

Again, the graph of the function ¢n., (o) +y, ia
beginning in the point D1 and there exists «x, > r,
such that the graph of the function 9,,_1 (@) + %, in-
tersects the halfline 34 5 in the point

D, = L[r,,n,], where
ALK (n,) Yy .
T- 731 e



For Q6 (m“lv.a_) the graph of P, (p) + ny, lies
more below than the halfline D, .

a) If x, = X, ,then

Pr, (ny) + Y, < ©
and from (5)
¥in,) < €,

what we need.

b) If n,< X, , we can continue, we can do further

steps, but because

d 1
e @) =~ Tor——
-?TK -1

there must exist A > 0 such that for all

Re<Ry, %2>, <R, R+ 4>

1 5 _E
‘/E -1 "'o-Ko
X3
holds. Because ~ £ is the direction of the half-
fl-,—Ro

lines R , 5:5 y %55 3 it is clear now that the
numbers )
Y(R)~ g 5 Y=%y 3 W5~y -~
are bounded below by the number A . Hence after a fi-
nite number of the same steps we obtain )(,‘-‘ = x, and
¥in,) =« € .
Part II. Because ¥ (R) £ &£ for allR e (R, R +d),
it follows from Theorem 1 that

#l(x)< € a.6. in O
and hence

“(a)ée-l(%‘l a.e. in 3.9. P
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which is a contradiction with the definition of ‘[(R,) 4

Example. Let (2 be the domain from Theorem 2, let
us consider @ (x) € C (@) such that :
(i) @ (%) = - R, arccovir E—i—"—"—l- for all
o

xedN-T(R,) ,
(1) mar @(x) >0
xe MCRyY)

If there exists « e W: (1) such that

Plw) = nrwp. v), thaw =g ,

e W)
thvrsP

then by means of Theorem 2 we have

trw (X) & —Rowwahliﬁf-gl- 0 a.e. in I'(R,)

which is a contradiction with & = @ a.e. on I‘(Ro) .
So there exists no weak solution & & W':(.Q.) with
this boundary condition P -

Remark. I think that Theorem 2 can be proved for
more kinds of domains which contain the part of ellipse,
parabola, cycloida and so on in the nonconvex part of the
boundary. For these kinds of curve there exist similar
auxiliary functions which we need to prove Theorem 2 (see
[41,p.202): Hence some counterexamples can be constructed
for this kind of domains, too. I mean that form of non-
convexity of the domain is not important, only the non-
convexity of the domain must be "essential", i.e. a part
of any curve must be contained in the nonconvex part of
the boundary . .
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§ 3. stenc o for weagk solution.
Definition 2. Let L c E, be a bounded domain
with the Lipschitz boundary. We say that x €« 0. is a
convex point of boundary, if there exists a neighborhood
WU (x) such that U(x) A QL is a convex set.
Theorem 3. Let (L c E, be a bounded domain with
the Lipschitz boundary. Let almost all points of AL
be convex points of the boundary, let ¢ e C (9 Q) .
Then there exists the point of a minimum of ¢ on
{ucw:(.ﬂ.) s 4 =@ on 00 ¢t

?
and in fact « e C2() .

Proof. Let A be a set of all points of Al  which
are not convex points of boundary. In Serrin’s paper ([5])
‘it is proved by the Perron’s method of subfunctions that
there exists 4 & C2() such that
(1) a is a solution of the equation of minimal surface
in 2 ,

i) « eC(A-4A),

(iii) w4 = @ forall x € 9L —-A .

So I need to prove only:

1) «we W";’(.Q.) and it ia a weak solution over
wica) ,

2) w=9 a.e. on oA} in the sense of
traces.
1) Because Il £ C in 0. , we can see from the Per-
ron construction that

lw! < C in 2 .
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The next part of the proof is the same as the proof

of Lemma.

2) Ifx e L is a convex point of boundary, there
exists the neighborhood U (x) such that

MmelChnl); u=g9 on L noqL ,

hence

thae = @ on Un o .

We have then

and

[11

(21

(3]

(4]

th u = @ forall x e O -A .

From « e u;‘ () it follows that thu e L,(o0)

thu =@ in L (o).
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