#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1971
PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log57

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

Commentationes Mathematicae Universitatis Carolinae

12,4 (1971)

A SEPARATION THEOREM FOR FINITE FAMILIES

Milan VLACH, Praha

It is widely recognized that separation of two con-
vex sets by linear functionals plays an important role in
the theory of optimiéation. Recently, beginning with the
paper by Dubovitskii and Milyutin [1], it has been con-
vincingly demonstrated by a number of authors (in addition
to [1) see, as examples,[2],[3),[4) and [5]) that the se-
paration properties of families of convex sets also re-
present natural and importanf tools in the theory of opti-
mizgation in linear spaces. In this note a basic separa-
tion theorem for finite families of convex sets in real
linear spaces is presented.

Let L be a real” linear space and let I be a fi-
nite sei. We say that a family {@, : + e I i of sub-
sets of L, can be separated if there is a family
”-i- :1 € I 1 of linear (i.e. additive and homogene-
ous) functionals on I, and a femily {A; : © € I} of
real numbers such that

(1) £, is not identically zero for some i e I,

(2) @Q,cixeLlf,(x)= A; 1 whenever i e I,
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= . ‘ .
(3a) = £, =0, (3) = 2; & 0

Note that the intersection i'(D.;.'f.x eL l£(x)< A 3 is
empty provided (3a) and (3b) are satisfied.

For subsets A and B of 1. (following the termi-
nology and notation of Victor Klee [6]), the core of A
relative to B , denoted cny (A) , is defined as fol-
lows: a e cxy (A) if and only if for each element &
of B there is a positive real number o¢ such that A
contains the segment [a,a + « (& -a )] . The core
of A relative to the affine hull of A is called the
intrinsic core of A and is denoted by «cx (A) .

Lemma. If M is a convex subset of a real linear
space I, such that Jier (M) is nonempty and such that
the zero-element of I,  does not belong to 4ee (M)
then there is a linear functional on L such that £(x) £

£ 0 whenever x e M .

Proof. Let us consider the set X, = {x e Lix = aqg,

o = 0,ye M3 . The set KM is a pointed convex
cone (with vertex 0 ) different from I and the core of
KM relative to the linear hull of KM is nonempty
(since the intrinsic core of M  is nonempty). It imp-
lies (see [7], Chapter 1,Theorem 3.2) that there is a not
identically zero linear functional £’ on the linear hull
of K, such that £ (x) & 0 whenever x e K,
and thus also £’ (x) & 0 whenever x € M . Extend-
ing £’ linearly to the whole of L we obtain a linear

functional £ on L with the required property.
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Theorem. If I ‘is a finite set and if a family
1@,: i € I¥ of subsets of a real linear space L
satisfies the conditions

(a) @; is convex for each < e I ,

(b)  4en (@) is nonempty for each i e 1 ,

(c) i,("\._,A'a:, (@;) is empty,
then the family {G;: < e I3 can be separated.

Proof. It is a simple exercise in elementary logic
to verify that the theorem is valid for the empty family
and for the families consisting of one set only. Further
let us notice (considering I = §0,1%, @, =10, 4 =M,
f,=-£,£=£, A, =2 =0 ) that the lemma ex-
presses the fact that the femily {03, M § can be
separated. Since for two subsets A, and A4 of I,

() A, , A, can be seperated if and only if
{403,A) ~A 3 can be separated,

(B) A, - :A,, is convex if both A, and A are
convex,

() 4en CA, ~ A ) ie nonempty if both <er (A))
and 4en (A1) are nonempty.

(o) 0 ¢ ien A - A ) if iex (A,) and ien (A)
are disjoint,
the lemms ensures that the theorem is valid for families
consisting of two sets. It remains to consider the fami-
lies consisting of more than two sets. Since any finite
set ] with more than two elements will serve as well as
any other for the purposes of this proof, suppose for the

sake of definiteness that I = {0,4,..,,m}, m > 1.
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Let us consider the Cartesian product P -&Tﬂi.'L‘-‘ , whe-
re I,'=L for i =4,2,...,m . The sets
M=y ePly = (x,,%,,...,%,), x, € &
for 4 = 41,2,..., m3}
N=dgpePla=(x,X, ;X)X =X = =X =X
for some x € @, 3}

are convex and in addition both 4ex (M) and Aex (N)
are nonempty and the intersection ien (M) N ien (N) is
empty. Hence there are linear functionals g, &+ on P
and real numbers A, o satisfying
9=+ 0 or & =+ 0
gCy) @ A  whenever & M and m(y) & w whenever

’

y e N,
g+h =0, A +u 0 .

Since the space P" is isomorphic to the space
m

* -* PR L
J1, L, , where PT (and similarly L7; ) denotes
the space of all linear functionals on P , there are
linear functionals f ,6 £ ,..., £, on L such that

for each ap = (X, Xp,000, Xp ) of P
m
¢ () = ‘i‘z"’1 £, (x;) .

m
Defining f° = - Z 8

PR T we obtain a family

-(54.' 4 € I3 of linear functionals on L such that

(1) and (3a) are satisfied. Since

n
F(p)= 3 £ (x) & 2
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whenever (.x1, Kyyeee, Xy ) € M , there are real numbers
Ayy Ayyeeey Ay such that £ (x;) & A; whenever
. n
1611,2,...,m}% and x; € @, and such that e

& A . Denoting & by A, we obtain a family

{A;: ¢ € It of real numbers such that in addition to
(1) and (3a) also (2) and (3b) are satisfied. This comp-
letes the proof.

If in addition to the assumptions of the theorem all

the sets (. are cones with the vertex 0 , then all A,
appearing in (2) must be zero. Indeed, if A; * 0 for so-
me 4 € I , then by (3b) Ay < 0 for some 4 € I and

taking z = g , where ¢ & Q’-_ and o = we ob-

i
2£; (y) ’
tain an element of 0.’-, contradicting the property (2). This
proves the following

Corollary. If J is a finite set and if a family
18;,: 76 I3} of subsets of a real linear space satisfies
the conditions

(@’) @Y 1is a convex cone with the vertex 0 for
each 7 e 1 ,

(b) 4dex (Q;) is nonempty whenever i e I ,

(e) %QJLUL (@) is empty, then there is a family
{iiz 1 € I3 of linear functionala on L such that

(1) £; is not identically zero for some < e I ,

(2°) £;,(x) & 0 , whenever { e I and x e Q
(3a) = €. = 0 .
. ted Vv

’
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