

Werk

Label: Article **Jahr:** 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log53

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 12,3 (1971)

VECTOR BUNDLES AS AN INSTRUMENT OF THE METRIC AND CONFORMAL DIFFERENTIAL GEOMETRY (Preliminary communication)

Oldřich KOWALSKI, Praha

In the following we shall give an abstract of the author's papers [5] and [6] (see references at the end of this note).

I. Submanifolds in a space of constant curvature

In [3] and [4] we have constructed a vector bundle model of a manifold M immersed into a space N of constant curvature. In the present paper [5] we use this model for a global formulation and generalization of some results by C.B. Allendoerfer concerning type numbers (cf. [1]).

Let us remind the basic definitions,

A graded Riemannian vector bundle $\{E^k, P_k\}^k$ over a manifold M is a Riemannian vector bundle $E \to M$, dim $E \ge dim M$, in which the following structure is given:

(i) a fixed bundle injection $j: T(M) \to E$,

(ii) an orthogonal splitting (graduation) $E = E^1 \oplus ... \oplus E^k$ such that $E^1 \equiv j T(M)$ (E^1 will be identified with

AMS, Primary: 53C40, 53A30 Ref.Z. 3.933.11

T(M)),

(iii) a system of bundle epimorphisms

$$P_{\mathbf{k}}: E^{1} \otimes E^{\mathbf{k}} \longrightarrow E^{\mathbf{k}+1}, \quad \mathbf{k} = 1, ..., \kappa-1,$$

such that the composed mappings

$$P^{\mathbf{A}}(X_{4},...,X_{\mathbf{A}}) = (P_{\mathbf{A}-4} \circ ... \circ P_{2} \circ P_{4})(X_{1} \otimes ... \otimes X_{\mathbf{A}})$$
are all symmetric.

We define <u>dual homomorphisms</u> $L_k: E^1 \otimes E^k \longrightarrow E^{k-1}$, $k = 2, ..., \kappa$, by means of the formula

$$(1) \langle L_{\underline{k}}(T \otimes X^{(k)}), Y^{(k-1)} \rangle = -\langle X^{(k)}, P_{\underline{k}-1}(T \otimes Y^{(k-1)}) \rangle.$$

Here $X^{(k)}$ denotes a section of M into $E^{(k)}$. We write simply $P_{k}(T,X^{(k)})$, $L_{k}(T,X^{(k)})$ instead of $P_{k}(T\otimes X^{(k)})$, $L_{k}(T\otimes X^{(k)})$ in the following.

By a sequence of canonical connections in $\{E^k, P_k\}^{\kappa}$ we mean a sequence of linear connections $\nabla^{(4)}, \ldots, \nabla^{(k)}$ in the vector bundles E^1, \ldots, E^{κ} respectively such that

- (i) each $\nabla^{(k)}$ preserves the inner product in E^k ,
- (ii) $\nabla^{(4)}$ is the canonical Levi-Civita connection in $\mathbf{E}^4 \equiv \mathbf{T}(\mathbf{M})$,

(iii) the Codazzi equation

$$\nabla_{u}^{(h+1)}P_{h_{c}}(T,X^{(h)}) - \nabla_{T}^{(h+1)}P_{h_{c}}(u,X^{(h)}) + P_{h_{c}}(u,\nabla_{T}^{(h)}X^{(h)}) - P_{h_{c}}(T,\nabla_{u}^{(h)}X^{(h)}) - P_{h_{c}}(T,T1,X^{(h)}) = 0$$

holds for k = 1, ..., k-1.

Remark that if such a sequence exists in { $E^{A\nu}$, $P_{A\nu}$ } , then it is unique.

Let us denote by $R^{(k)}$ the curvature transformation of the connection $V^{(k)}$. The Gaussian equation with the

parameter C and of order & is given by

$$R_{uT}^{(k_0)} X^{(k_0)} + P_{k-1} (u, L_{k_0} (T, X^{(k_0)})) - P_{k-1} (T, L_{k_0} (u, X^{(k_0)})) +$$

$$+ L_{k+1} (u, P_{k_0} (T, X^{(k_0)})) - L_{k+1} (T, P_{k_0} (u, X^{(k_0+1)})) =$$

$$= C \{ \langle T, X^{(k_0)} \rangle u - \langle u, X^{(k_0)} \rangle T \} \quad (k = 1, ..., \kappa).$$

A Riemann geometry $G_{\kappa,c}$ of genus κ and with the exterior curvature C on a manifold M is a graded Riemannian vector bundle $E = \{E^{k\epsilon}, P_{k\epsilon}\}^{\kappa}$ over M such that

- (i) a sequence $\nabla^{(4)}, \dots, \nabla^{(\kappa)}$ of canonical connections exists in E ,
- (ii) the Gaussian equations (3) hold for $m=1,\ldots,\kappa-1$. A Riemannian geometry $G_{\kappa,c}$ is called <u>integrable</u> if the κ -th Gaussian equation holds, too.

The relationship between Riemannian geometries (particularly maximal Riemannian geometries) and immersions of manifolds into space forms is studied in [3],[4].

Now, a Riemannian geometry $G_{n,c} = \{E^{h}, P_{h}\}^{h}$ is called of type $t \ge h$ (h = 0,1,...) if the bundle morphism $L_n : E^1 \otimes E^n \longrightarrow E^{n-1}$ has the following property at each point $x \in M$: there is a h-dimensional subspace $F_x \subset E_x^1$ such that the restricted map $L_{n,x} : F_n \otimes E_x^n \longrightarrow E_x^{n-1}$ is injective. The following global theorems are proved in [5]:

- T1. Any Riemannian geometry $G_{\kappa,c}$ of type $t\geq 3$ is integrable.
- T2. Any two prolongations $G_{n+1,c}$, $G'_{n+1,c}$ of type $t \ge 3$ of the same Riemannian geometry $G_{n,c}$ are

equivalent.

T3. If $E = \{E^{2n}, P_{2n}\}^{n}$ is a graded Riemannian vector bundle of type $t \geq 4$ such that a sequence $\nabla^{(1)}, \ldots, \nabla^{(k-1)}$ of canonical connections exists in the graded subbundle $\{E^{2n}, P_{2n}\}^{n-1}$, then the last canonical connection $\nabla^{(k)}$ exists provided that the Gaussian equation of order $\kappa - 1$ holds.

II. Submanifolds of a conformally euclidean space

A. Fialkow [2] , has characterized a submanifold of a conformally euclidean space N by a number of tensors, called conformal fundamental tensors, exact up to a conformal transformation of N. In [6] we develop a more elegant theory, which enables to characterize a submanifold $M \subset N$ by a canonical structure of the induced bundle $\varphi_* T(N)$ ($\varphi \colon M \longrightarrow N$ is the inclusion map).

Basic definitions. A Riemannian bundle $E(A,\nabla) \longrightarrow M$ is a vector bundle $E \longrightarrow M$ provided with a fibre metric A and with a linear connection ∇ preserving the inner product A.

A bundle $E(A,\nabla)\longrightarrow M$, dim $E\geq \dim M$, is called soldered if there is given a fixed bundle injection $j:T(M)\longrightarrow E$ such that ∇ is torsion-free with respect to j, i.e., such that $\nabla_{u}j(T)-\nabla_{T}j(U)-j([U,T])=0$ for any vector fields U,T on M. We consider the tangent bundle T(M) as a Riemannian subbundle $T(M)(A,\nabla^{E})$ of $E(A,\nabla)$, where ∇^{E} is the orthogonal projection of the connection ∇ into T(M). Here A defines a Riemann

metric on M and $\nabla^{\mathfrak{T}}$ is the corresponding Levi-Civita connection.

Now, for any soldered Riemannian vector bundle $E(A,\nabla)\longrightarrow M$, $dim\,M\geq 3$, we can define a bundle morphism $C:T(M)\otimes T(M)\longrightarrow Hom(E,E)$, called the Weyl transformation, and a bundle morphism $D:T(M)\longrightarrow E$, called the deviation transformation.

Basic result: (Generalized Schouten's theorem)

Let $E(A, \nabla) \longrightarrow M$ be a soldered Riemannian vector bundle, dim $M \ge 3$.

If and only if

- a) C = 0 in the case dim $M \ge 4$, or
- b) C = 0, $(\nabla_{\mathbf{u}} \, \mathbf{D})(V) (\nabla_{\mathbf{v}} \, \mathbf{D})(\mathbf{u}) = 0$ in the case dim $\mathbf{M} = 3$, the bundle $\mathbf{E}(\mathbf{A}, \nabla)$ is locally conformally euclidean in the following sense: there is a conformal imbedding $\boldsymbol{\varphi}$ of a neighbourhood \mathbf{u} of any point $\boldsymbol{\rho} \in \mathbf{M}$ into a conformally euclidean space \mathbf{N} such that the induced bundle $\boldsymbol{\varphi}_{\mathbf{x}} \, \mathbf{T}(\mathbf{N})$ is "conformally equivalent" to $\mathbf{E}(\mathbf{A}, \nabla)_{\mathbf{u}}$. The imbedding $\boldsymbol{\varphi}$ can be determined uniquely by the addition of a system of initial conditions. Any two imbeddings $\boldsymbol{\varphi}, \, \boldsymbol{\varphi}'$ of \mathbf{u} into \mathbf{N} corresponding to different systems of initial conditions can be transformed one into another by a local conformal transformation \mathbf{F} of the space \mathbf{N} .

In case that $E \equiv T(M)$ we obtain hence the classical Schouten's theorem.

References

- [1] ALLENDOERFER C.B.: Rigidity for spaces of class greater than one, Amer.J.Math.61(1949),633-644.
- [2] FIALKOW A.: Conformal differential geometry of a subspace, Trans.Amer.Math.Soc. V.56(1944),309-433.
- [3] KOWALSKI O.: Immersions of Riemannian manifolds with a given normal bundle structure, Part I., Czech
 Math.J.19(94)(1969),676-695.
- [4] KOWALSKI O.: Immersions ..., Part II, Czech.Math.J. 21(96)(1971),137-156.
- [5] KOWALSKI O.: Type numbers in the metric differential geometry of higher order, to appear in J. Diff. Geometry.
- [6] KOWALSKI O.: Partial curvature structures and the conformal geometry of submanifolds, to appear (probably in J.Diff.Geom.).

Matematický ústav Karlova universita Malostranské nám.25 Praha-Malá Strana Československo

(Oblatum 29.4.1971)