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VECTOR BUNDLES AS AN INSTRUMENT OF THE METRIC AND
CONFORMAL DIFFERENTIAL GEOMETRY

(Preliminary communication)

Oldrich KOWALSKI, Praha

In the following we shall give an abatract of the
author ‘s papers [5] and (6] (see references at the end of

this note).

I. Submanifolds in a space of constant curvature

In [3]) and (4] we have constructed a vector bundle
model of a manifold M immersed into a space N of con-
stant curvature. In the present paper [5] we use this mo-
del for a global formulation and generalization of some
results by C.B. Allendoerfer concerning type numbers (cf.
nn.

Let us remind the basic definitione;

A graded Riemannian vector bundle {B"', E, 3~ ver
a manifold M is a Riemannian vector bundle E — M ,
dim E, 2 dim M , in which the following structure is given:
(i) a fixed bundle injection 4: T(M) — E ,
(ii) an orthogonal splitting (graduation) E = t'e...@ E*
such that E' = 4T(M) ( E' will be identified with
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TM) ),
(iii) a system of bundle epimorphisms
B:E'@E® — E*', A=4,.,n-1,
such that the composed mappings
PR(X,,..., X)) = (B ..o B, °E)(X,®... ® X, )
are all symmetric.
We define dual homomorphisms L, : E'er*— E“"',
# = 2,..., 7 ,by means of the formula

(h-1

(1) (L“(TQXCM)’Y ’)"<X‘“€§‘_4(T®Y""”)) .

Here X  denotes a section of M into B"‘ . We write
simply B, (T,Xx*), L, (T,X“) instead of
B (TOX™), L (T®X™) in the following.

By a sequence of canonical connections in {E“', P*_!”'
we mean a sequence of linear connections Vm,... ~ V"")
in the vector bundles E", co y E® respectively such
that
(i) each V™ preserves the inner product in gh ,
(ii) g is the canonical Levi-Civita connection
in E' s T -
(iii) the Codazzi equation

VOB (T, x ™) - YR L x ™+ B (u, v x ) -

@ - B (T, Y*x®) - B, (ru,T1,x*) = 0
holds for % = 4,...,x-1.

Remark that if such a sequence exists in{E%, B 3",
then it is unique.

Let us denote by R"'” the curvature transformation

7* .| The Gaussian equation with the

of the connection
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parameter C and of order & is given by
)
RonX™e B | (0,1, (T, X™)-§ _, (T, L, (U, X +
(3 +L, (W (T,X™)- L, (T,F ux*")=
= CA<T,X™>u - <u, X®>T? (w=1,.,x).

A Riemann geometry G,‘ & of genus x and with
’

the exterior curvature C on a manifold M is a graded

Riemannian vector bundle E = {E"’, ) 7% 3% over M such
that
(i) a sequence V! g ?

geee s of canonical connections

exists in E ,
(ii) the Gaussian equations (3) hold for Ae = 1,009 =1,
A Riemannian geometry G',‘,c is called integrable if the
X% -th Gaussian equation holds, too.
The relationship between Riemannian geometries (par-
ticularly meximal Riemannian geometries) and immersions
of manifolds into space forms is studied in [31,[4].
Now, a Riemannian geometry Gm,c = {E", In I is
called of type t 2 f (% =0,4,...) if the bundle morphism
L,: E'®@ E*— g1 has the following property at
each point x € M : there is a % -dimensional subspace
F, c E] such that the restricted map L RO®EY—
—> E;'4 is injective. The following global theorems are
proved in [5] :
Tl. Any Riemannian geometry G',"c of type t = 3 is
integrable.
T2. Any two prolongations G G’ of type

nedc 2 nad,e
t = 3 of the same Riemannian geometry G, ¢ @ore
2
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equivalent.

T3, If B = {Eb, P‘.}"’ is a graded Riemannian vector bund-
le of type t = 4 such that a sequence V“),..., g
of canonical connections exists in the graded subbundle
{E"’, Yh !"“" , then the last canonical connection V“”
exists provided that the Gaussian equation of order n-1
holds.

IT. Submanifolds of a conformally euclidean space
A. Fialkow [2] , has characterized a submanifold

of a conformally euclidean space N by a number of ten-
sors, called conformal fundamental tensors, exact up to
a conformal tranaformation of N, In [6] we develop a mo-
re elegant theory, which enables to characterize a sub-
manifold M c N by a canonical structure of the indu-
ced bundle y*T(N) (@p: M —> N is the inclusion map) .

Bagic definitions. A Riemannian bundle E(A,V) — M

is a vector bundle E —> M provided with a fibre met-
ric A and with a iinear connection V  preserving the
inner product A .

A bundle E(A,V)—> M, dbm E = dim M , is
called gsoldered if there is given a fixed bundle injection
3:TM)— E such that V  is torsion-free with res-
pect to 3 ,i.e., such that ¥ 4(T)-V 3(U) -3(CU,TH=0
for any vector fields W,T on M .We consider the tangent
bundle T(M) as a Riemannian subbundle T(M)(A,V®) of
E(A,V), where V® is the orthogonal projection of the

connection V into T(M). Here A defines a Riemann
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metric on M and VT is the corresponding Levi-Civita
connection.

Now, for any soldered Riemannian vector bundle
E(A,V)— M, dimM =3 , we can define a bundle morph-
ism C: T(M)® T(M) —> Hom(E,E) ,called the Weyl
transformation, and a bundle morphism D : T(M) — E ,

called the deviation transformation.
Basic result:(Generalized Schouten’s theorem)

Let ECA,V) —> M  be a soldered Riemannian vec-
tor bundle, dim M = 3 .

If and only if
a) C = 0 in the case dimM = 4 , or
) C=0,(9DVI-({,D)(U) =0 in the case
dimM = 3, the bundle E(A,V) is locally conformglly

euclidean in the following sense: there is a conformal im-

bedding ¢ of a neighbourhood W of any point # € M in-
to a conformally euclidean space N such that the indu-
ced bundle P T(N) is "conformally equivalent" to
E(A, V)m. The imbedding ¢ can be determined unique-
ly by the addition of a system of initie} conditions. Any
two imbeddings @, ¢’ of W into N cerresponding to
different systems of initial conditions can be transformed
one into another by a local conformal transformation F
of the space N .

In case that E = T(M) we obtain hence the classi-

cal Schouten’s theorem.
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