

Werk

Label: Article **Jahr:** 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log51

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 12,3 (1971)

CONSTRUCTION OF QUASIGROUPS HAVING A LARGE NUMBER OF ORTHOGONAL MATES

Charles C. LINDNER, Auburn

1. <u>Introduction</u>. The object of this paper is to give a construction which produces a quasigroup having a large number of orthogonal mates, any two of which differ by more than a permutation. By a pair of quasigroups differing by more than a permutation we mean that neither of the associated latin squares can be obtained from the other by a renaming of the symbols on which they are based. In particular we prove the following theorem.

Theorem. If there are h mutually orthogonal quasigroups of order n, t mutually orthogonal quasigroups of order q containing t mutually orthogonal subquasigroups of order n, and n mutually orthogonal quasigroups of order q-n, then there is a quasigroup of order n orthogonal mates any two of which differ by more than a permutation. If n=0 we obtain a quasigroup of order n having at least $(h-2)(h-1)^{n}$ orthogonal mates orthogonal mates.

The proof of this theorem is based on a generalization of A. Sade's singular direct product. In particu-

AMS, Primary 05B15 Secondary 20N05

Ref.Ž. 8.812,2, 2.722.9 lar, a combination of the generalized singular direct products defined by the author in [1] and [2].

2. Definitions. Let (V, @) be an idempotent quasigroup and G, a set. For each w in V let $\sigma(w)$ be a binary operation on Q so that $(Q, \sigma(w))$ is a quasigroup. Further suppose that $P \subseteq Q$ is such that all of the operations agree on P and such that $(P, \sigma(w))$ is a subquasigroup of $(Q, \sigma(w))$. For each $(w, w) w \neq w$ in V, let $\Theta(\alpha r, \alpha r)$ be a binary operation on $P' = Q \setminus P$ so that (P', & (w, w)) is a quasigroup. We remark here that the $|V|^2 - |V|$ operations $\otimes (w, w)$ are not necessarily related to each other; the |V| operations $\sigma(v)$ are not necessarily related to each other; and finally that none of the $|V|^2 - |V|$ operations @(w, w) are necessarily related to any of the IVI operations $\sigma(w)$. We now define a generalized singular direct product denoted by $V_0 \times Q(\sigma(w))$, $P, P' \otimes (\alpha r, \alpha r)$, to be the quasigroup \oplus

on the set $PU(P' \times V)$ as follows:

- (1) $n_1 \oplus n_2 = n_1 \sigma(w) p_0 = n_1 \sigma(w) p_0$ if $p_1, p_2 \in P$;
- (2) $p \oplus (p',v) = (po(v)p',v)$ if $p \in P$, $p' \in P'$, $v \in V'$;
- (3) $(n',v)\oplus n = (n'\sigma(v)p,v)$ if $n \in P$, $n' \in P'$, $v \in V$:
- (4) $(n'_{1}, v) \oplus (n'_{2}, v) = n'_{1} \sigma(v) p'_{2}$ if $n'_{1} \sigma(v) p'_{2} \in P$ = $(n'_1\sigma(v)n'_2,v)$ if $n'_1\sigma(v)n'_2 \in P'$;
- (5) $(p'_1, w) \oplus (p'_2, w) = (p'_1 \otimes (w, w) p'_2, w \otimes w)$ if v + w.

We remark that if we take $\sigma(w) = \sigma(w)$ for all w, w in V we have the generalized singular direct product defined in [1], whereas if we take $\mathfrak{B}(w,w) = \mathfrak{B}(w',w')$ for all (w,w'), (w',w') we have the generalized singular direct product defined in [2]. If we take both of these restrictions we have A. Sade's singular direct product [3]. Finally if we take $P = \emptyset$ and $\sigma(w) = \sigma(w) = \mathfrak{B}(w,w')$ for all w,w' in V we have the ordinary direct product.

If in the generalized singular direct product $V_{\mathcal{O}} \times \mathbb{Q}(\sigma(w), P, P' \otimes (w, w'))$ all of the operations $\sigma(w) = \sigma$ we will replace $\sigma(w)$ by σ . Similarly if all $\otimes(w, w) = \otimes$ we will replace $\otimes(w, w')$ by \otimes .

3. Proof of the theorem. Let (V, \mathfrak{D}_q) , (V, \mathfrak{D}_2) ,, (V, \mathfrak{D}_{b-1}) be b - 1 mutually orthogonal idempotent quasigroups, and (G, σ_1) , (G, σ_2) , ..., (G, σ_4) t mutually orthogonal quasigroups containing t subquasigroups (ρ_1, σ_1) , (ρ_1, σ_2) , ..., (ρ_1, σ_2) so that $\rho_1 = (\rho_1, \rho_2)$, ..., (ρ_1, ρ_2) so that $\rho_2 = (\rho_2, \rho_3)$, ..., (ρ_1, ρ_2) be ρ_1 and (ρ_1, ρ_2) , ..., (ρ_1, ρ_2) be ρ_2 mutually orthogonal quasigroups. Let $\rho_1 = (\rho_1, \rho_2)$ be the singular direct product formed from (ρ_1, ρ_2) , (ρ_2, ρ_3) be the singular direct product formed from (ρ_1, ρ_2) , (ρ_2, ρ_3) and (ρ_1, ρ_2) . M of course has order (ρ_1, ρ_2) had denote the set of all generalized singular direct products of the form (ρ_1, ρ_2) , (ρ_2, ρ_3) , ..., (ρ_3, ρ_4) , (ρ_1, ρ_2) , (ρ_2, ρ_3) , ..., (ρ_3, ρ_4) , (ρ_1, ρ_2) , (ρ_2, ρ_3) , ..., (ρ_3, ρ_4) , (ρ_1, ρ_2) , (ρ_2, ρ_3) , ..., (ρ_3, ρ_4) , (ρ_1, ρ_2) , (ρ_2, ρ_3) , ..., (ρ_3, ρ_4) , (ρ_1, ρ_2) , (ρ_2, ρ_3) , ..., (ρ_3, ρ_4) , (ρ_1, ρ_2) , (ρ_2, ρ_3) , ..., (ρ_3, ρ_4) , (ρ_1, ρ_2) , (ρ_2, ρ_3) , ..., (ρ_4, ρ_4) , (ρ_1, ρ_2) , (ρ_2, ρ_3) , ..., (ρ_4, ρ_4) , (ρ_1, ρ_2) , (ρ_1, ρ_2) , (ρ_2, ρ_3) , ..., (ρ_4, ρ_4) , (ρ_1, ρ_2) , (ρ_1, ρ_2) , (ρ_2, ρ_3) , ..., (ρ_4, ρ_4) , (ρ_1, ρ_2) , (ρ_1, ρ_2) , (ρ_2, ρ_3) , ..., (ρ_4, ρ_4) , (ρ_1, ρ_2) , (ρ_1, ρ_2) , (ρ_2, ρ_3) , ..., (ρ_4, ρ_4) , (ρ_1, ρ_2) , (ρ_1, ρ_2) , (ρ_2, ρ_3) , ..., (ρ_4, ρ_4) , (ρ_1, ρ_2) , (ρ_1, ρ_2) , (ρ_2, ρ_3) , ..., (ρ_4, ρ_4) , (ρ_1, ρ_2) , (ρ_1, ρ_2) , (ρ_2, ρ_3) , ..., (ρ_4, ρ_4) , (ρ_1, ρ_2) , (ρ_1, ρ_2) , (ρ_2, ρ_3) , ..., (ρ_4, ρ_4) , (ρ_1, ρ_2) , (ρ_1, ρ_2) , (ρ_2, ρ_4) , (ρ_1, ρ_4) , $(\rho_1,$

and $\mathfrak{G}(n,nr) \in \{\mathfrak{S}_2,\mathfrak{S}_3,\ldots,\mathfrak{S}_n\}$. Clearly \mathcal{M} contains $(s-2)(t-1)^n(\kappa-1)^{n^2-n}$ distinct quasigroups. The proof will be complete if we can show that (i) each member of \mathcal{M} is orthogonal to \mathcal{M} , and (ii) no member of \mathcal{M} can be obtained from any other member of \mathcal{M} by a permutation.

(i) Let $A \in \mathcal{M}$. Without loss in generality we can take $A = V_{O_2} \times (o(w), P, P' \otimes (v, w))$. Now if $\sigma(w)$ is the same operation for all w in Vand $\otimes(v,w)$ is the same operation for all $v \neq w$ in V we have the ordinary singular direct product which A. Sade has shown is orthogonal to M , [3]. Suppose we take $A' = V_{\mathfrak{Q}_1} \times \mathfrak{Q}(\sigma_2, P, P' \otimes_2)$. New for each v in V the copy of (Q, σ_a) in M and the copy of (Q, σ_2) in A' are both based on PU(P'x $\{v\}$). Since (0, $\sigma_{\!_{1}}$) and (0, $\sigma_{\!_{2}}$) are orthogonal so are their copies in M and A'. Hence, if we superimpose the latin squares associated with their copies in M and A' we obtain {PU(P'x {wi})} x {PU(P'x {wi})} . Now if for any w in V we replace (Q, σ_2) by $(Q, \sigma(w))$, $\sigma(v) \in \{\sigma_2, \sigma_3, \dots, \sigma_t\}$, in the construction of A' the copy of $(Q, \sigma(w))$ is still based on $PU(P' \times \{w\})$. Since $(0, \sigma_{\alpha})$ and $(0, \sigma(\sigma))$ are orthogonal, superimposing the latin squares associated with their copies still gives $\{PU(P' \times \{w\})\} \times \{PU(P' \times \{w\})\}$. Since all copies of the $(0, \sigma(v))$ agree on P we can replace σ_1 by $\sigma(w)$ in the construction of A' with the result that the singular direct product

 $A'' = V_{\Theta_2} \times Q(\sigma(v), P, P' \otimes_2)$ is still orthogonal to M.

Now let $w \neq w \in V$. The latin squares associated with (P', \otimes_4) in M is based on $P' \times \{ v \otimes_4 w \}$ and the latin square associated with (P', @,) in A" is based on $P' \times \{ v \circ_{2} w \}$. Since (P', \otimes_{4}) and (P', 8) are orthogonal if we superimpose their associated latin squares in M and A" we obtain $\{P' \times \{w \odot_1 w\} \times \{P' \times \{w \odot_2 w\}\}$. As above if in the construction of A" we replace (P', Θ ,) $(P', \otimes (v, w)), \otimes (v, w) \in \{ \otimes_2, \otimes_3, \dots, \otimes_k \}$ the latin square associated with (P', @(v, w)) is still based on $P' \times \{ w \otimes_{2} w \}$. Since $(P', \otimes (w, w))$ orthogonal to (P', ⊗) if we superimpose their associated latin squares in M and A" we still obtain iP' x in Q, wil x iP' x in Q, wil . It follows that we can replace Θ_2 by \otimes (nr, nr) in the construction of A" and the resulting quasigroups $A = V_{\Theta_2} \times Q$, (o(v), P, P' \otimes (w, w)) are still orthogonal to M . (ii) Now let $M_i = V_{\mathfrak{O}_i} \times \mathbb{Q}(\sigma(w), P, P' \otimes (w, w))$ and $M_{i} = V_{0i} \times Q(\sigma(n), P, P' \otimes (n, nr))$ belong to M. One of two things is true: either $\sigma(w)$ is the same in the construction of both M; and M; for each a in V or the centrary. If $\sigma(w)$ is the same for all w $\in V$, since each of (V, Θ_i) and (V, Θ_i) is idempotent the latin squares associated with the $(Q, \sigma(x))$, $v \in V$, in M; and M; are identical and in the same relative position. Hence, any permutation, other than the

identity, applied to one of M_i , M_j cannot give the other. On the other hand if $\sigma(w)$ is different for some $w \in V$, then the subquasigroup of M_i based on $PU(P' \times \{w\})$ is orthogonal to the subquasigroup of M_j based on $PU(P' \times \{w\})$. Again it follows that no permutation will transform one of M_i , M_j into the other.

This completes the proof of the theorem.

4. Examples. (i) Since 17 = 4(5-1) ± 1 and there are 3 mutually orthogonal quasigroups of order 4 and 4 mutually orthogonal quasigroups of order 5 containing 4 mutually orthogonal quasigroups of order 1, there is a quasigroups of order 17 having at least 331, 776 orthogonal mates, any two differing by more than a permutation. (ii) Since 22 = 7(4-1) + 1, similar remarks produce a quasigroup of order 22 having at least 512 orthogonal mates, no one of which can be obtained from the other by a permutation.

References

- [1] C.C. LINDNER: The generalized singular direct product for quasigroups, Can.Math.Bull.
 14(1971),61-63.
- [2] C.C. LINDNER: Construction of quasigroups using the singular direct product, Proc.Amer.Math. Soc.(to appear).

[3] A. SADE: Produit direct-singulier de quasigroupes orthogonaux et anti-abéliens, Ann.Ac.Sci.
Bruxelles, Sér.I.,74(1960),91-99.

Auburn University
Auburn, Alabama
U.S.A.

(Oblatum 30.3.1971)

