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SIZES OF SETS AND SCME FIXED POINT THECREMS

S. SWAMINATHAN and A.C. THOMPSCN, Halifax‘o

l. If x and 4 are distinct elements of a metric spa-
ce (X,o ) the distance d(x,q) is a measure of the
"gize" of the set fx,n*f and a contraction mapping
can be viewed as one which reduces, in a uniform way,
the size of all two-element subsets. More generally, the
diameter d (A) = sup fd(x,4): x,4 € A¥ is a mea-
sure of the size of an arbitrary bounded subset A of
X . A further notion of the size of an arbitrary boun-
ded subset A of X was introduced by Kuratowski (11)
as the infimum of those positive numbers € such that
A can be covered by a finite number of subsets of X
of diameter less than € , The closely related notion of
the infimum of those ¢ such that A can be covered
by a finite ¢ -net has been considered by Sadovskii [12]
for Banach spaces. Sadovskii and earlier Darbo [5] -
who used Kuratowski’s definition - proved fixed point
theorems for mappings which reduce the size of bounded

subsets of the spaces considered by them.
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The purpose of this note is to present the fixed point
theorem of Browder-Gohde-Kirk (3, 6, 1C] in a similar
light and to give a proof of the Darbo-Sadovskii theo-
rem using Bourbaki ‘s fixed point theorem instead of

Zorn’'s Lemma.

2. A type of uniform structuree

Let X be a topological space. Let 73 be a family
of subsets of X such that (i) X e B, (ii) Be &
implies B e B ,(iii) the intersection of members of any
subfamily of 1  belongs to B .

The family of all closed subsets of a topological
space and the family of all closed convex subsets of a
linear topological space are simple examples of such fa-
milies.

Definition 2.1. A f3 -uniform structure on X is
a family U of subsets of X x X such that
(1) As U forevery UeU; (A={(x,x)s xeX})
and X x X e U ,

(ii) Every U € % is symmetric.

(iii) For every x € X and U e , the set U, =
= ({xi xX)n U is closed and belongs to B .
(iv) For every x ¢ X, N{U U e U} = {x] .

We write 4, to denote the collection {U, 3 W e U} .

Remarks:

(a) We do not require all the properties of Hausdorff
uniformity in the usual sense.

(b) The only connection between the topology and the
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uniform structure is that specified in (iii). This al-
lows, for example, the possibility of X being a nor-
med linear space with the weak topology, J3 the fami-
ly of all closed convex sets and the 5 -uniform
structure being such that ‘Il.x is the family of all
closed balls with positive radius centered at x .

(c) "Symmetric" in (ii) means that for all x, el ,
if 4 ¢ U, , then xsuv_ .

(d) Conditions (iii) and (iv) together imply some fur-
ther conditions on the family # , for example: {x? €

€ f3 for every x € X .

3. Notions of the "size" of sets.

Let X be a topological space with a B -uniform
structure % , For a subset A of X we consider the
following families of subsets of U .

Definition 3.1.

(1) D(A)=fU e : for everyxeA,Ag U,};
(ii) R(A)=4{U € % : ‘there exists x € A  with
As U, ;

(iii) @, (A)= U € U : there exists a finite subset
F of X with As U{U,:xeF1};

(iv) G,(A)= {U e % : there exists a finite subset
Fof A with Ag U{U,:xeF1} .

These sets are non-empty since X x X belongs to
each one of them.

The set ) is called the 4 -diameter of A; R
is called the WU -A -radius of A and depends on the
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"shape" of A since points x in A are needed for
the "centers" of the measuring sets WU, ; 0; are
measures of the "total boundedness" (or precompactness)
of A relative to @ , It should be noted that a mea-
sure of non-compactness defined by means of " ¢ -nets"
was introduced in (7] and [8], and also, indepeudently,
in [12].
Observe that when X is a normed linear space and

'u,, is the family of all closed balls of positive ra-
dius centered at x , we can identify each U e U with
a ball of positive radius centered at the origin. Then,
for bounded subsets A of X ,
d(A)= inf{e:B(0,e) € D(A)} is the diameter of A ,
n(A)m inf(e:B(0,e)€R(A)} is the"radius” of A y
and

Qi CA)m inf{e:B(0,e) 6 G; (At (i=4,2) is such
that for all € > g, (A) there exists a finite e -net
for A (with elements in X and in A respectively).

We further remark that in this context there is a

semi-linear structure available for bounded subsets of

X .

A1+A2- {x + Xyt X6A; 3, AL = {Ax1x€At(A20)
and that with this structure d,x and g. are "semi-

norms” in the sense that

d.(A1+ Aa) & d.'(A')-o- d.(Az7, Ad(AA)= AdA) (A 20)
and similarly, for x4 and Qi » Moreover, d and =

are monotonic, i.e., if ,A1 s A.z then d.(A1) €
< d ('A'z> » Also the g, satisfy the inequalities
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A1 = g,(A) £29 (A) forall As X .

Definition 3.2. The set A is said to be 4 -
totally bounded if 01 (A) = o .

Definition 3.3. The set A has ‘U -normal struc-
ture if R(B) > D(B) for every B such that
Be B, BsS A and B is not a singleton.

Remarks:

(i) We use = (or > ) to mean gtrict inclusion
throughout.

(ii) The set A 1is a singleton if and only if D (A) =
= U ,

(iii) The definition of normal structure comes directly
from the definition of Brodskii and Milman [2] for a
bounded convex subset of a normed linear space, namely,
A bas normal structure if and only if x(C) < d ((C)
for every non-trivial convex subset C of A .

Next we are concerned with fixed point theorems for map-
pings which satisfy inequalities with respect to the
above measures of size. In what follows we shall usually
suppress expiicit reference to 9 and speak of normal

structure, diameter, etc.

4. The Browder-GShde-Kirk fixed point theorem.
Let X be a topological space with a S -uniform

structure. Let £ be a function whith maps X into it-
self.

Definition 4.1. (i) 4 is non-expansive if

- 541 -



D(£CA)) 2 DCA) for every two-element set
A={x, gyl & X .

(ii) £ is pormalizing if R(e! £(B)) > D(B)
for every non-trivial subset B of B .

Here ch A (with respect to B ) denotes the

'smallest closed member B of B which contains A
(and is the intersection of all such B ). We observe
alao that R (ehr A) 2 R (A) and is, in general,
larger since there may be suitable "centers" in c¢f A
which are not in A ,

Theorem 1. Let X be a compact topological space
with a 3 -uniform structure. Let £ be a mapping of
X into itself, which is both normalizing and non-ex-
pansive. Then £ has a fixed point.

Proof: (similar to that in [10]) Consider the set
P of all non-empty closed subsets A of X which are
in 5 and which are invariant under € . The set P is
non-empty since X belongs to it. Also it is inductive-
1y ordered by inclusion since any chain in /° has the
finite intersection property and hence has a lower bound
(the intersection of all members of the chain) which is
non-empty since X is compact and belongs to ;3 since
$ is stable for such intersections. Hence, by Zorn's
Lemma, ® has minimal elements. If .A.a is such a mini-
mal element it is a fixed point of the mapping ¢ defi-
ned by y(A) = ch (£(A)) . Suppose, if possible,
that A, is not a singleton, i.e. D(A,) & U . Then,
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since £ is normalizing, R(g(A,)) = R(Ao) 2 D(A,).
Let U € U be chosen so that W' & D (A,) but
IL’GR(AO) andletAquf.xertAoGu:‘}.

Then (i) A,,
there exists an x such that A, & W) ; (ii)

is non-empty since U'e R(A,) and so

A1 € A, by definition; (iii) A.1 # A, since

u ¢ D(Aa) and so not every x in Ao belongs to
.A.1 i (iv) Aanon{uf'_; a‘,cAa} for, if

X & .A.1 , then Yy & U for all g e A, and hence by the

i
X € Ao N fu’y_: Yy < A'o } . conversely, if x is in the

symmetry of W' , x € U for all 4 in Aa , l.ee,
intersection then x e u"y_ for all g e Aa and so g €
. ?
e W, forallyeA,,ie., A, s W, .
Now since Ao and W

k 4
implies that A1 € B . \loreover, since A, e P and

are all members of £ , (iv)

since uj" is closed for each 4, A.,' is closed. We

prove, finally, that A1 is invariant under £ . Let

X 2
€ Ao and hence also, X & ll:* so that W’ e

xeA ,then A) & U i.e., 4 € U, for all g e

€Dix,y 3 for all «x €A,, g€ Ay, Now £ is non-
expansive so that W e D{£(x),£(yg)} for all x €

6.A.1 ,zy,er, i.e., W 2 £(A,) , But then,

since u;m is a cloi(:; member of 3 , ey =
gchf(Ao)-g,(Ao) = A, . Thus £(x)e A, and A,
is invariant under £ and hence is in £ , But (ii) and
(iii) contradict the minimality of Ao , Thus Ao con-
sists of a single point fa,} . Hence ch {£(a,)} =

- {a,ai . This implies that £ (a.o) = a, because, for
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any %tx,{%isch(%}-{seﬁslch
and B is closedd = ﬂ{u%:we‘ltis 143

The purpose of the next lemma and proposition is
to establish a connection between normalizing mappings
and sets with normal structure. _

Lemma 4.2. If X is a topological space with B -
uniform structure and if A is a subset of X , then
(1) D(et A) = D(A) and (ii) if £+ X— X is
non-expansive, then D(£(A)) 2 D(A) .

Proof: (i) Since A S e¢h A it ie clear that if
U €D(eér A) then U & D(A) . Suppose conversely
that W € D(A) . Let xe A, Then A U, and so,
since u’.x‘ 3 and is closed, ¢t A & Uy . Thus, if

pyechA, yel, and hence x € U, for every
xe.A,i.e.,A.Eu,y_ and 80 ch A £ U, for eve-
rygy€ch A, ie., UeD(chA).

(ii) Let W e D(A), then U € Di{x, gy} for every
pair x, @,e_A . Since £ is non-expansive, this means
UeDif(x), £(g)} for every pair x, 4 €A , i.e.,
Ue D{w,r»? for every pair u, v €f(A),i.e.,u e U,
for every w , 7€ £(A) ., Thus £(A) € u, for eve-
ry » 6£(A) and so Ue D(£(A)) .

Remark: Part (ii) of the lemma means that the res-
trictien to pairs in the definition of non-expansive map-
pings ig unnecessary.

Preposition 4.3. If X has normal structure, then
every non-expansive mapping of X into itself is norma-

liging.
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Proof: For every non-trivial subset B of A
for which B € 3 , it is true that R (ch £ (B)) o
o2D(ch £(B)) , by the definition of normal struc-
ture, and by Lemma 4.2, it follows that
R(ehh £(B)) o D(£(B)) 2 D(B) .

5. The Darbo-Sadovskii fixed point theorem.

As in Section 4, let X be a topelogical space
with a 4 -uniform structure % and let f be a map-
ping of X into itself. In this section, however, we
shall assume more: namely that % is a base for a uni-
formity on X and that the tepelogy on X is the uni-
form topology generated by 4 . The definition (3.2 abo-
ve) of 9, -totally bounded sets then coincides with the
more usual definition (see for example [9], p.198). We
shall also assume throughout this section that the map-
ping £ 1is continuous. For the main theorem we make use
of Tychonoff’s fixed point theorem and, therefore, re-
quire a linear structure and a specific type of £ -uni-
formity; for this reason this section is somewhat diffe-
rent in character from the preceding ones.

Definition 5.1. The mapping £ 1is condensing on X
if 0.4 (£CA)) o 0,1 (A) for every A in X which
is not totally bounded.

The following lemma is clear.

Lemma 5.2. If £ is condensingon X and if A €
e X and £(A) = A then A is totally bounded.
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Lemma 5.3. If £ 1is condensing on X then every
orbit 0(x) = {£™(x)|Im = 4,2,3,.,.. 1 is to-
tally bounded.

Proof: Since £ (0(x)) € 0(x) we have
Q4(£(O(x)J 2 G, (0(x)) . On the other hand, sin-
ce 0(X) = £(0(xNU4{x} , if F is a finite

U -net for £(0(x)) , then FU{x? is a finite
U -net for 0(x) . Hence B (0(x)) = @ (£(0(x)))
and we must have O0(x) totally bounded.

Now suppose that X 1is complete with respect to the
uniformity % ., It is well known ([9]p.198) that if A
is totally bounded and complete then A is compact. It
is, therefore, a corollary to Lemma 5.3, that if X is
complete and if £ 1is condensing on X then K = 0(x)
is a compact subset of X for all x in X , Moreover,
since we are assuming that £ is continuous, £(X) € K .
Thus, there exist non-empty compact subsets of X which
are invariant under £ , The purpose of the rest of this
section is to show that when B 1is the family of convex
sets in a locally convex linear topological space X ,
then there are compact elements of 53 which are inva-
riant under £ ., The argument is divided into two lemmas.

Lemma 5.4. Let % be the family of convex sets and
% a uniformity for the topology of a locally convex
linear topological space X generated by closed convex
neighborhoods of 0, then G, (ch A)= G, (A) for
each A in X ,
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This lemma is proved in the same way as Lemma 1 of [12].
Lemma 5.5. With the hypotheses of the preceding
lemma, and if £ is a condensing mapping on some ele-
ment A of B which is complete then there is a compact
element of 3 invariant under £ |,
Proof: Let K denote the closure of an orbit

D(x) . Let  be the set of all closed non-empty
elements C € 7B such that £(C) g C and CNK =
% g and consider P pa-rtially ordered by inclusion.
Then P is non-empty since, A € %, Consider the map-
ping £: P —> P defined by g (C) = ch (£(C)) .
Then, since C 1is closed and convex (in 5 ) and £ (C) g
£ C, wehave ¢ (C) < C . Moreover every chain in
has a lower bound L = N{C: C 1in the chain}. (L NK
is non-empty since, for each C in the chain, CNK is
a non-empty compact set and these sets have the finite
intersection property, and, clearly, L has the other
defining properties of $ .) By the Bourbaki fixed point
theorem (see, for example, [1] p.41l) the mapping ¢ has
a fixed point in P ; i.e., ¢ ¢C,) =C, . Thus

eh £(C)) = C, . Now

@y Cet £CC,)) = @ (£(C,)) 2 B (C)) = B (ch £(C,))
with the inclusion strict, by the condensing property of
£ , unless C, is totally bounded. Thus C, is to-
tally bounded. Since C(, is also a closed subset of
the complete set A, C, is compact.

Theorem 2 (Darbo-Sadovskii). Let A be a comple-

te, convex, bounded subset of a locally convex linear
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topological space E and let £ be continuous and
condensing on A ., Then £ has a fixed point in A .

Proof. By Lemma 5.5 there is a compact convex sub-
set C, of A invariant under £ . The result now fol-
lows from Tychonoff s fixed point theorem applied to £
and the set C, .

Remark: Lemma 5.5 can be obtained from Propositions
1 and 4 of [4], and Theorem 2 is contained in Theorem 3
of [4]. However the above proof does not use Zorn’s Lemma.
We thank the referee for his helpful comments on this pa-

per.
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