

Werk

Label: Article Jahr: 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log46

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 12,3 (1971)

A REMARK ON SCHWARTZ SPACES CONSISTENT WITH A DUALITY Kamil JOHN, Praha

In [3], a notion of (5)-neighbourhood in a topological linear space E was introduced. We show that
a more simple condition is sufficient for a neighbourhood to be (5)-neighbourhood and use this result to obtain a simpler characterization of the finest Schwartz
topology consistent with a duality.

Let U be a closed absolutely convex subset of E. Then E_U denotes the normed space obtained by taking U as closed unit ball in the vector space generated by U and passing to a factor space, if the topology is not separated. By E(U,V) we mean the continuous map $E_U \longrightarrow E_V$ induced from the identity transformation of E, if $U \subset V$. By a neighbourhood we always mean a closed absolutely convex neighbourhood of zero.

In this notation a neighbourhood $\mathcal U$ is called (S)-neighbourhood in $\mathbf E$, if there exists a sequence $\{\mathcal U_m\}$ of neighbourhoods in $\mathbf E$ such that $\mathcal U_0=\mathcal U$, $\mathcal U_{m+1}\subset\mathcal U_m$ and $\mathbf E(\mathcal U_{m+1},\mathcal U_m)$ is completely continuous map of $\mathcal E_{\mathcal U_{m+1}}$ into $\mathcal E_{\mathcal U_m}$ for all m. The following

....

AMS: Primary 46A15

Ref.Z. 7.972.2

lowing proposition says that only the existence of one such neighbourhood $\mathcal{U}_{4} \subset \mathcal{U}_{-}$ is sufficient.

1. <u>Proposition</u>. A neighbourhood $\mathcal U$ in the topological space E is (S)-neighbourhood if and only if there is a neighbourhood $\mathcal V$ in E, $\mathcal V\subset \mathcal U$, such that the operator E $(\mathcal V,\mathcal U):E_{\mathcal V}\longrightarrow E_{\mathcal U}$ is completely continuous.

<u>Proof.</u> The restricted condition is obviously necessary for \mathcal{U} to be a (5)-neighbourhood. To prove the converse we use the following proposition [4, Proposition 3]:

An operator $T: E \longrightarrow F$ (E and F are normed spaces) is completely continuous and $|T| \le \beta$ if and only if for every $\epsilon > 0$ there exists a sequence $\{a_m\}, a_m \in E', |a_m| \le \beta + \epsilon, |a_m| \to 0$ such that $|T(x)| \le \sup |a_m(x)|$ for every $x \in E$.

Now if we have a neighbourhood V such that $E(V,U)\colon E_V\to E_U$ is completely continuous, then, using this proposition we obtain the existence of $a_M\in E_V^*$, $|a_M|\le 1$ and $a_M>0$, $a_M\to 0$ such that $p_U(x)=|E(V,U)|\le \sup_{x\in V}a_M|a_M(x)|$. We prove first that there is a neighbourhood W in E such that $V\subset W\subset U$ and the operators E(V,W) and E(W,U) are completely continuous. It is sufficient to put $W=\{x\in E\mid \sqrt{a_M}\mid a_M(x)\mid\le 1\}$ i.e. the polar set of the bounded set $\{b_M\}\subset E_V^*$, where $b_M=\sum_{x\in V}a_{x}$. W is obviously a neighbourhood in E and $p_W(x)=\sum_{x\in V}a_{x}$. W is obviously a neighbourhood in E and $p_W(x)=\sum_{x\in V}a_{x}$. W is obviously a neighbourhood in E and

mentioned proposition, we obtain that $E(V,W): E_V \to E_W$ is completely continuous. To see that also $E(W,U): E_W \to E_U$ is completely continuous, we observe that $p_{U}(x) \leq \sup_{v \in V} |a_m(x)| = \sup_{v \in V} |a_m(v)|$ and $p_{W}(k_m) \leq 1$.

Now we put $\mathcal{U}_1 = \mathcal{W}$. The operator $\mathbf{E}(\mathcal{V}, \mathcal{U}_1)$ being completely continuous, we may, by the same reason, find a neighbourhood \mathcal{U}_2 in \mathbf{E} , $\mathbf{V} \subset \mathcal{U}_2 \subset \mathcal{U}_1$ such that $\mathbf{E}(\mathcal{V}, \mathcal{U}_2)$ and $\mathbf{E}(\mathcal{U}_2, \mathcal{U}_1)$ are completely continuous. Proceeding by induction we obtain a sequence $\{\mathcal{U}_m\}$ of neighbourhoods in \mathbf{E} , $\mathbf{V} \subset \mathcal{U}_{m+1} \subset \mathcal{U}_m \subset \mathcal{U}_0 = \mathcal{U}$, such that $\mathbf{E}(\mathcal{U}_{m+1}, \mathcal{U}_m)$ and $\mathbf{E}(\mathcal{V}, \mathcal{U}_{m+1})$ are completely continuous. This proves our proposition.

2. Proposition. Let E, F be paired linear spaces. Denote by $\mathcal Q$ the set of all absolutely convex $\mathscr C(F,E)$ compact subsets of F. Then the finest topology of a Schwartz space on E consistent with the duality $\langle E,F\rangle$ is the topology of uniform convergence on all those A ε ε $\mathcal Q$ for which there is B ε $\mathcal Q$ such that the topology of the normed space F_B and the topology $\mathscr C(F,E)$ coincide on A .

<u>Proof.</u> Let $\tau = \tau$ (E, F) be the Mackey topology on E consistent with the duality $\langle E, F \rangle$. In view of [3, prop. 3] it is sufficient to show that for every $A \in \mathcal{A}$, A^0 is $\tau - (S)$ -neighbourhood in E if and only if there is $B \in \mathcal{A}$ such that the topology $\mathcal{E}(F, E)$ and the topology of the normed space $F_{\mathbf{A}}$

coincide on A. This is again easily seen by Proposition 1 and by the observation that for the neighbourhoods Y, U, where $Y \subset U$, in a topological linear space E, the following is equivalent:

- a) The operator $E(V, U): E_V \longrightarrow E_U$ is completely continuous.
- b) The topology of (E', E) and the topology of the normed space $E_{\gamma o}$ coincide on \mathcal{U}^o . This completes the proof.

References

- [1] M.B. DCLLINGER: Nuclear topologies consistent with a duality, Proc.Amer.Math.Soc.23(1969), 565-568.
- [2] A. GROTHENDIECK, Espaces vectoriels topologiques,
 Sao Paulo,1954,1958.
- [3] K. JOHN: Schwartz spaces consistent with a duality,

 Comment.Math.Univ.Carolinae 12(1971),

 15-17.
- [4] K. JOHN: Some remarks on compact maps in Banach spaces (submitted to Casop.Pest.Mat.)

Matematický ústav ČSAV Praha 1, Žitná 25 Československo

(Oblatum 12.3.1971)