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THE EXISTENCE OF UPPER SEMICOMPLEMENTS IN LATTICES OF
PRIMITIVE CLASSES

Jaroslav JEZEK, Praha

Consider a type 4 of universal algebras, contain-
ing at least one at least binary function symbol. A.D.
Bolbot [1] asks: is the variety of all 4 -algebras
generated by a finite number of its proper subvarieties?
It follows from Theorem 1 below that the answer is posi-
tive.

Results of [1l] are essentially stronger than Theo-
rems 3 and 4 of my paper [3].

§§ 1 and 2 contain some auxiliary definitions and
lemmas. § 3 brings the main result. In § 4 we prove four
rather trivial theorems that give some more information.
Theorem 5 states that the answer to Bolbot s question
is negative, if minimal subvarieties are considered in-

stead of proper subvarieties.

§ 1. E -proofs, reduced length and (x, 4)-

equations
For the terminology and notation see § 1 of [2].

Let a type 4 =(m,) be fixed throughout this
i461l

paper.
AMS, Primary 08A15, 08A25 Ref. 2. 2.725.2
Secondary -~

- 519 -



In auxiliary considerations we shall often make use

of finite sequenves. The sequence formed by t1,..., t,

. r .
will be denoted by 't ,...,t,”7 . The case m = 0 is
not excluded; the empty sequence is denoted by & . If

" ] r
€ ="t,.., t, and @ = u«,..,4, are two

e T. - .
finite sequences, then "t ,.., t, , 4 ,..., 4« is

denoted by & @ @ . Evidently, 6§ @ /= fo 6 = 6.

6-!41’ 6,521, 6:”,... in

If & is given, then we define
this way: 6" = ¢; e . 60 6in3

If a 4 -theory E (i.e. a set of A -equations,
i.e. E € WA > WA ) is given, then for every t € W,
we denote by L Ce {t)  the subset of W, defined in
this way: 4 e L C. (t) if and only if there exists an
endomorphism @ of WA
such that @ (a)=t and @ (&)= u .Elements of LC_(t)

and an equation <a,& > ¢ E

are called leap-consequences of t by means of E .

I1f E is given, then we define a subset |C_ (t)
of m for every t € W, in this way: if either te X
or t = £, for some ieI, m, = 0, then IC (t) =
=LC (t);if t = fi::ﬂ‘”’tni) where m, 2 4 , then
ICE (t) = chff) v ék-Jq {2, (t,..., t’._“ f,'tiM,..., tm‘ Y,
§ e 1€, C(t; )% . Elements of IC. (t) are called im-
mediate consequences of t by means of E .

By an E -proof we mean a finite, non-empty sequen-
ce "tq, ooy

very 4 = 41,...,m -1 one of the following three cases

1:%" of elements of W, such that for e-

takes place: either t’- = t$'+1 or t,: is an immediate
consequence of t;‘-m by means of E or t£+4 is an
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immediate consequence of t,- by means of E . A natu-

ral number 4 (1< 4 £ m =~ 1) is called leap
in an E -proof "t .., t,”  if either t; e
cLCECt’-H) or t;,, € LCg (ty ). Ifau and o are

two elements of WA y then E -proofs ‘_t1,,,,, t 7 such

"
that '1;1-4.‘, and t, = v~ are called E -proofs of
from ., It is easy to prove that whenever £ is a A-
theory and w«, v e WA ,
ly if there exists an E -proof of v from « .An E -

then E  {«,a > if and on-

proof rtq, <.y t,  is called minimal if every E -proof
of t,  from t, has at least m members. If ¢ is a
4 -equation, then {€} -proofs are called € -proofs.
Lemma 1. Let h el, m, 22 ; lett,w el ;
puta=£ (t, u,t,t,.,t) and & = £, (u,t,t,t,.., ¢t).
Then every minimal <@ ,& > -proof has at most one leap.
Proof. Let "t ,..., t,”  be a minimal ¢a,# ) -proof;
suppose that it has at least two leaps. Evidently, this
proof has two leaps 4,4 (1 & 3 %< €£m-1) such
that between them there are no leaps. There exists an en-

domorphism @ of WA such that either

G (P ), ), glh), ., 9t Kty =
= £ (plu),@(t), @(t),.., p(t))
or t mf, (pu),@lt), @(t),..., p(tN&k tiny =
= £, (PCt), @(u), §Ct),..., PCEI) ,

There exists an endomorphism ¥ of WA such that ei-
ther
= £y (v (t), w(w), y(t),..., y(t) & taes =

- 521 -



= £ (¥ lw), y (), (), ..., (L)

or on the contrary. If & = F + 4 , then evidently

t. = ¢

4 ms+q in 81l cases, so that Tt ..., ty

tavas oor tm is a shorter <(a,& ) -proof of t,
from t , a contradiction. Hence 4o > 4 +1  For eve-
ry L (j % 2 & 4 +1) there evidently exist
Wier oty Wa, e such that t&' fo (] o101y w"w""
In all cases

-
teeen t;'" £“_(w‘2’?._”_, Wi+’ ""’5,5‘.2:"'1""’%.}&2);

ooy By (UL s W a0s W s> W o)y Blenas 0o £

is evidently a shorter (@, £ ) -proof of t, from t,
a contradiction.

Let us asasign to each t € W, a natural number
£ (t) ,called the reduced length of t , in this way:
if either t € X or t = £; for some i e I, m; =0,
then lCt_:) =4, if t = £, (t,.., t,,%) where m, = 1,
then £(t) = £(t )+ ... + ZCtmi) o

Let a variable x be given. Denote by TA(.x) the
set of all t & W, such that no f; (where my =0 )
and no variable different from x belongs to S(t) .
( SCt) is the set of all subwords of ¢ .)

4 -equations (a,ALr> such that both a- and £
belong to TA (x) are called (x,4d) -equations. The
set of all (x, ) -equations (aq, &) satisfying

£(a) = £(L) is denoted by E, (x) .
Lemma 2. Let x € X and t & T, (x).Then
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L(@p(t)) = £(t)-L(@(x)) for every endomorphism
@ of W, .
Proof is easy (by the induction on t ).
Lemma 3. Let a variable x ,a 4 -theory E <
= EA(.x) and two elements w«,n of W, such that
Er—<u,r» ) be given. Then 2(w) = £(a) .
Proof. Applying Lemma 2, it is easy to prove the fol-

lowing assertion by the induction on a : whenever a €

e W, and &relC (a), then L(a) = £(&) .

§ 2. Occurrences of subwords; .h -numbers
Let us call a subset A of W, admissible if
whenever wu,n~ € A and w $ 2, then « is not a
subword of ar , Let an adm.isaible set A Dbe given. Then
we assign to every ¢t e WA a finite sequence
OCCA (t) of elements of WA in this way: if either
teX ort=£ forsome iel, m =0, then
OCCACt) =7  in the case t € A and oce,ct) =
= 0 inthecase t ¢ A ; if ¢ =£(t, .., t,%) whe-
re m; Z 4, then DCCA (t) = 7T in the case t €
€A and 0CC, (t) = OCCA(t1)0... L OCCA(t,,u)
in the case t ¢ A , Evidently, O0C CA (t) is a fi-
nite sequence of elements, each of which belongs to A
and is a subword of t ; an element of A occurs in
()(',CA (t) if and only if it is a subword of t
Let two natural numbers ~, m be given,
m 22 ,Llet hel, my 22, Then h:‘" ( h;:'" ’
respectively) denotes the set of all t = £, («x,,.., arfmzzwa
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such thet £ (e, ) = L(x3)= oo ICec%) & l(aca)sm.l(cg,)

(£(x)m R dm.. = R(exy J&L(x) =m.L(e)) , resp.)

and £(t)= m . Evidently, the sets 47’  and ot
are disjoint; put A = h:;" v h":,"" . Let us
call two elements of A7~ similar if either they
both belong to h"";" or they both belong to A&™2,

m
If G'-Ft”..., t, end @ = "u,',...,u.z" are two fi-

nite sequences of elements of &7  then we write

6 % @ if and only if fe = £ and t; and A are
similar for every F = 4,..., & . Evidently, 7 is
an admissible set.

Let an element /4 € I  such that m, = 2 be
given; let t e WA . By an M -number of t we mean any
natural number m 2 2 such that no element of 41,”1" v
v 4\«: v h:u ... 1is a subword of t . Evidently, the
set of all natural numbers that are not M -numbers of
a given element t e WA is finite. By an v -number
of a 4 -theory E  we mesn any natural number m 2=
Z 2 such that, for every {a,&>€ E, m is an
A -number of both @ and & .

Lemmg 4. let h eI, m, 2 2, Let E bea fi-
nite A4 -theory. The set of all natural numbers that
are not h -r;umbers of E is finite.

Proof is evident.

If a variable x and an element h € 1 such that

m, = 2 is given, then we define elements u""’, xrh

xhh

’
yeeo of W, in this way: x* X3 i
=&, (x™m¥ . k),
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Lemma 5. Let h e 1 ,m Z 2. Let mZ 2 be
a natural number, X € X and w,2 e W, ; let

CE (x, a™® %, %), £,v(an""“,x,x,..., X)) = a2,

Put m*= £(x™*) Then
(i) for every natural number mm  the sequences
OCC.‘:: (w) and OCC“:’ () have an equal
number of members; _
(ii) if « # 2, then there exists a natural num-
ber 4 such that OC%’:, (w) » OCC"“:« (2r)  does
not hold.

Proof. We shall write 0CC, instead of
0CC, o* as 4 and m™ are fixed here. Put &=
hy  ?

= <£,'(x,x”":x,,.,, x), 5.«,"“”": X,%,..,,%)> . We shall
prove by the induction on « thet whenever 2~ is an
element of W, such that € <« ,a-> , then (i) and
(ii) take place. If either u € X or « = £; for so-
me iel, m =0, then #~= & and everything is
evident. Let w = £, (« ,..., a.“‘) ,where m, = 1 .
By Lemma 1, it is sufficient to consider the following

two cases:

Case 1: Some <€ -proof of v from .« contains no

leap. Then there evidently exist +;,..., ¢, such
b
thet o = “'4(%""’%4) and ek <w, v 2, ,

e <, , v, > . By Lemma 3 we have L) =
= L(v), £(u, )= l(q),.,.,t(uﬂ‘,) = L(w,,) . Let us
prove (i). If m > £(«) , then 0CC _ («) and

0cC,, (+v) are both empty; if m < £ («), then the

assertion follows from the induction hypothesis; it re-
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mains to consider the case m = £L(w). If my = 1,

then 0CC, («) = 0CC,, (u,) and 0CC,, (2) =

= 0CC, (a7, ) , so that the assertion follows from the

induction hypothesis. If m, = 2 , then 0CC_ («)

is either empty or equal to T and similarly for
0¢C,, (+) ; if one of the elements « and 2 be-

longs to 4™ , then from £(uw ) = £(1),..., A(u, )=
m 4 1’ "y

’

?

= l('%w) it follows that the other belongs to h::
too. (i) is thus proved. Let us prove (ii). If « = ~~,
then 4, = a7 for some 3 (1 & 3 £ m,) ; by the
induction hypothesis there exists a number & such that
OCC*. (“'1') ~ OCC‘.’ ('v;) does not hold. We have
“w & 4;«:.* , because otherwise m; = m, = 2 and
simulteneously £ (w) = k £ l(u,,') would take pla-
ce. Similarly « ¢ h”;: . From this and from the fact
that by the induction hypothesis (i) holds for «,, ...
rory by, 5 WE GeY that 0CC, (w) &~ 0CC, (ar) does
not hold. ’

Case 2: Some ¢ -proof of o from « contains ex-
actly one leap. Then evidently i = # and there exist
Yy ey Yn, such that + = £, (v,..., 'v’%) and
e <u,, 0, e Ku,, v, -ei-<u,,,15>,...,ei—<u%,qg;m>.
Let us prove‘(i). If m > £(w), then 0CC,, («)
and 0CC, (ar) are both empty; if m = £(«) ,then
0CC,, ()= .’ end 0CC,y Cr) = 7, if m <
< AL (u), then the assertion follows from the induction
hypothesis. For the proof of (ii) it is sufficient to put

A = £(au); we have evidently 0CC, («)= "u” and
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0CC () = "7 5 "W & "7 does not hold.
Lemma 6. Let & e I, m, 2 2 , Let a variable
X , an element t € T, (x), an % -number m of ¢

and an endomorphism @ of W'A

W e hTohyu MuU... is a subword of @(t) , then

be given. If some

it is a subword of @ (x) .
Proof (by induction on t ). The case t = x is

evident. Let t = £, (t t, ) where m, = 1, Let

9 00ey ﬂ“‘

W o= £h(°°1""’°°m-,,,) € h,._  be a subword of @ (t) .
We have w & @ (t), a8 w= @(t)= £; (q:(t,),...,q:(i;,l‘,))
would imply < = 4 and <, = g:(tq),..,, ac“h- qa(t“h) "

80 that by Lemma 2 easily t e h:}ﬂ , @ contradiction.

Consequently, 4 is a subword of ?(t’._) for some 4
(1<« 4 < m;) 5 by the induction hypothesis (we may

apply it, because m is an & -number of ta-_ as well),

’

w is a subword of @ (x) .
Lemma 7. Let # e I, my = 2 . Let a variable X,
an element t € T, (x), a natural number m £ £(@(x))

and an endomorphism @ of W‘A be given. Then

OCCH,, (p(t) = (0CC, m (q’(x)))c“”, for every m = 2,
~

L d

Proof (by induction on + ). The case t = x is evi-

dent. Let t = £ (t, ..., t,

0CC instead of 0CCum . If m; = 2 , then we get
Ll
Pt ¢ b, from m & £(p(x)) , hence,

’

0CC @(t) = O0cCgt)e... @ OCC ¢(t,,) =

= (0CC g N

)  where m; = 41 ., Write

@...© (0C p(x)"“™V o (oce grant?

If m, = 1, then 0CC g(t) = 0CC @) =
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cLCe)]

%1 . oce @ (x)) .

cé
= (0CC @Cx))

Lemma 8. Let hel, m 2 2 . Let xe€ X, we
€ WA and <q, 4 > eEA(x) ; let » be an % -num-
ber of both & and & . Then the following holds: when-
ever some «~ is an immediate consequence of w« by
means of <a, &) , then DCC":; (w) & occh:; (2)
for every m .

Proof (by induction on 4 ). Write 0OCC in-
stead of 0cch: . If either «w 6 X or w = £
for some 4 € I, m;, = 0, then either o = « or the-
re exists a finite sequence < ,..., <, of elements

1

of 1 such that My e =y = 4 and » =

3
= £ h‘.;2 Coee f"b (). ) evi:ently, in all cases the
sequences OCC («) and (0CC (+) are both empty.
et u = £‘.' (.a,“,,., —u.,,,’,) where m; = 1 .
Let firstly there exist a 4 (1 & j £ m;) and
a v eW, such that v = £, (4,..., &, %, 45, u,,“.)
where 'v; is an immediate consequence of ey by means
of {a,4& ), By Lemma 3 we have L(u,'_) = ,e{rv;),lf
m > £(u), then 0CC(w) and 0CC (v) are both em-
pty. If m « L (w), then the assertion follows from
the induction hypothesis. Let m = L(«). If m; = 1, then
0CC (w) = 0CC (w,) and 0CC(v) = 0CC (),
80 that the a‘ssertion follows from the induction hypo-
thesis. If m, 22, then 0CC («) is either empty or
equal to '’ , and similarly for 0CC(2) , so that
from l.(a;-)s-l(v?:) we get easily QCC (w) 2 0CC (v).
Let secondly there exist an endomorphism g of
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W, such that « = @(a) and » = @ (&). In this
case we prove 0CC (wu) = 0CC (2) . Suppose on the con-
trary that this does not hold. Evidently, some element
of M,  is a subword of either 4 or 4~ . By Lemma 6

we have m = L(@(x)) &and by Lemma 7 we get
0CC (@(a)) = 0CC(g(e)) .

§ 3. The existence of upper semicomplements
Let us denote by Ly the greatest and by ¥, the

smallest element of &£ If @ @and & are two ele-

ments of &£, , then t:eir supremum in &'A is denoted
by a Vy & and their infimum by a AAIr . An element
a of :{,A is called upper semicomplement in :CA if
there exists a & € %A such that & o L, and
@ vy b= Ly -
To each A-theory E there corresponds an ele-
ment in &, ; this element was denoted by (m (E) in
[21.

Theorem 1. Let 4 be a type such that m, = 2

for some A &€ I, Let x be a variable and E a finite
set of (x, ) -equations such that whenever <a,&)e
€ E, then Z(a)= £(&). Then (A (E) is an up-
per semicomplement in 454 s

Proof. By Lemma 4 there exists a natural number
m 2 2 such that the number m* = £(x™*") is an

A -number of E ., Put € = (£ (x, x"‘"';x,.x,..., x) ,

1,’(«'”": X, X, X, 400, X)D. It is sufficient to prove
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Cn (E) A (n(e) = L, - Suppose on the contrary that
there exists a / -equation <{«,2r)  such that
wevr, E+-<uw,»> and ¢ <u,n) . By Lemma 5
there exists a natural number % such that

OCC‘%# (w) & OCCbg* (ar) does not hold. Lemma 8
implies OCC“,.,: (w) =~ OCCh:* () , a contra-
diction.

Remark. Let again 4  be such that m, = 2 for
some h e 1 ; let x € X . By Theorem 1, Cn (E) is an
upper semicomplement in :ﬂA for every finite subset
E of E,(x). ( E,(x) is the set of all (x,4)-
equations <a, 4 ) such that L(a)= £(4&) .) Howe-
ver, if m; 2 1 for all £ el , then Cn (E, (x))
is not an upper semicomplement. This follows easily from

Lemma 7 of [3].

§ 4. Some supplements

For every t & WA let %Yar (t) be the set of
all variables that are subwords of ¢ . Let us denote by
SL, the set of all A -equations <a, & ) satis-
fying Var(a) = Yar (&), It is easy to prove that
SL, is a fully invariant congruence relation of
W, , 8o that SL, & &£, . Evidently, SL, # 3, -

Theorem 2. For every type A , whenever E is an
upper semicomplement in xd , then SLA éAE , i.e.
E 8L, .

Proof. Suppose on the contrary that there exists
en equation <a ,£> € E such that Yax(a) + Yax (4);

let e.g. Var(a) % Yax (&) ; choose a variable
- 53 -



x € Yar (a) \ Var (&) , As E is an upper semicom-
plement, there exists an equation <c¢,d > such that
c#+d and (ni<a,&?) v, tn(<c,ad) = 1, . There
exists a unique endomorphism @ of WA such that
@(x) =c for all x € X ; there exists a unique endo-
morphism 3 of W, such that @g(z)=d and ¢ (x)=
=¢ for all x € X \N{z?% . We have evidently

<a, &) C@la),y(al)?, <c,d>r <(@pa),y(a)> and
@(a) ¢ y(a), a contradiction.

Theorem 3. Let 4 be arbitrary. If @ and &
are two elements of &,  euch that a v, # = (, end
@ A, A = 3, , then one of them is equal to (, and
the other is equal to Py o
Proof follows from Theorem 2.

Theorem 4. Let 4 be arbitrary. If @, ..., @,

"

>
(m 2 4) are elements of &, such that Q@ VeV,

is an upper semicomplement in &, , then at least one

2n

of them is an upper semicomplement in 34 .

Proof is trivial; the corresponding assertion holds
in all lattices.

Theorem 5. Let 4 be such that m, = 4 for some

€el. Let a,,..., 2, (m = 1) be atoms in &, . Then

v m
Q Vy ree Yy Qp is not an upper semicomplement in

.‘£A . Consequently, L,

nite number of atoms in £, .
Proof. By Theorem 4 it is enough to prove that no

is not the supremum of a fi-

atom is an upper semicomplement. This follows from Theo-

rem 3.
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Remark. Bolbot [1] proved (for types A4 as in Theo-
rem 1) that there exists a set A of atoms in &, such
that Y is the supremum of A and Card A & &, +

+ Cand I .

Problem. Consider , for example, only the most impor-
tant case: ] contains a single element 4 and m; =2.
(Algebras of type J are just groupoids.) Find all

J -equations € such that Cm (e ) is an upper se-

micomplement in :QA 5
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