

Werk

Label: Article Jahr: 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log45

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 12,3 (1971)

THE EXISTENCE OF UPPER SEMICOMPLEMENTS IN LATTICES OF PRIMITIVE CLASSES

Jaroslav JEŽEK, Praha

Consider a type △ of universal algebras, containing at least one at least binary function symbol. A.D. Bolbot [1] asks: is the variety of all △ -algebras generated by a finite number of its proper subvarieties? It follows from Theorem 1 below that the answer is positive.

Results of [1] are essentially stronger than Theorems 3 and 4 of my paper [3].

§§ 1 and 2 contain some auxiliary definitions and lemmas. § 3 brings the main result. In § 4 we prove four rather trivial theorems that give some more information. Theorem 5 states that the answer to Bolbot's question is negative, if minimal subvarieties are considered instead of proper subvarieties.

E -proofs, reduced length and (x, Δ) equations

For the terminology and notation see § 1 of [2]. Let a type $\Delta = (m_i)_{i \in I}$ be fixed throughout this paper.

AMS, Primary 08A15, 08A25 Ref. Z. 2.725.2 Secondary -- 519 -

In auxiliary considerations we shall often make use of finite sequences. The sequence formed by t_1,\ldots,t_m will be denoted by $\lceil t_1,\ldots,t_m\rceil$. The case m=0 is not excluded; the empty sequence is denoted by \emptyset . If $\emptyset=\lceil t_1,\ldots,t_m\rceil$ and $\emptyset=\lceil u_1,\ldots,u_m\rceil$ are two finite sequences, then $\lceil t_1,\ldots,t_m,u_1,\ldots,u_m\rceil$ is denoted by \emptyset or \emptyset . Evidently, \emptyset or $\emptyset=\emptyset$ or $\emptyset=\emptyset$. If \emptyset is given, then we define \emptyset in \emptyset i

If a \triangle -theory E (i.e. a set of \triangle -equations, i.e. E $\subseteq W_{\triangle} \times W_{\triangle}$) is given, then for every $t \in W_{\triangle}$ we denote by L C_{E} (t) the subset of W_{\triangle} defined in this way: $\mu \in L C_{E}$ (t) if and only if there exists an endomorphism φ of W_{\triangle} and an equation $\langle \alpha, \ell \rangle \in E$ such that $\varphi(\alpha) = t$ and $\varphi(\ell) = \mu$. Elements of L C_{E} (t) are called leap-consequences of t by means of E.

If E is given, then we define a subset $|C_E(t)|$ of W_Δ for every $t \in W_\Delta$ in this way: if either $t \in X$ or $t = f_i$ for some $i \in I$, $m_i = 0$, then $|C_E(t)| = LC_E(t)$; if $t = f_i(t_1, ..., t_{m_i})$ where $m_i \ge 1$, then $|C_E(t)| = LC_E(t) \cup \bigcup_{j=1}^{m_i} \{f_i(t_1, ..., t_{j-1}, \xi, t_{j+1}, ..., t_{m_i}); \xi \in |C_E(t_i)| \}$. Elements of $|C_E(t)|$ are called immediate consequences of t by means of E.

By an E-proof we mean a finite, non-empty sequence t_1, \ldots, t_m of elements of W_{Δ} such that for every $j=1,\ldots,m-1$ one of the following three cases takes place: either $t_j=t_{j+1}$ or t_j is an immediate consequence of t_{j+1} by means of E or t_{j+1} is an

immediate consequence of t_i by means of E. A natural number j ($1 \le j \le m - 1$) is called leap in an E-proof t_1, \ldots, t_m if either $t_i \in EC_E(t_{i+1})$ or $t_{i+1} \in EC_E(t_i)$. If m and m are two elements of W_Δ , then E-proofs t_1, \ldots, t_m such that $t_1 = m$ and $t_m = m$ are called E-proofs of m from m. It is easy to prove that whenever E is a Δ -theory and M, $m \in W_\Delta$, then $E \vdash (M, m)$ if and only if there exists an E-proof of m from m. An E-proof m from m has at least m members. If m is a m-equation, then m is called minimal if every m is a m-equation, then m is called m-proofs are called m-proofs.

Lemma 1. Let $h \in I$, $m_h \ge 2$; let $t, u \in W_\Delta$; put $a = f_h(t, u, t, t, ..., t)$ and $b = f_h(u, t, t, t, ..., t)$. Then every minimal $\langle a, b \rangle$ -proof has at most one leap.

<u>Proof.</u> Let $[t_1, ..., t_n]$ be a minimal (a, b) -proof; suppose that it has at least two leaps. Evidently, this proof has two leaps j, k $(1 \le j \le k \le m-1)$ such that between them there are no leaps. There exists an endomorphism g of W_A such that either

$$\begin{aligned} t_{j} &= f_{j_{1}}(\phi(t), \phi(u_{i}), \phi(t), ..., \phi(t) \& t_{j+1} &= \\ &= f_{j_{1}}(\phi(u_{i}), \phi(t), \phi(t), ..., \phi(t)) \end{aligned}$$
 or
$$\begin{aligned} t_{j} &= f_{j_{1}}(\phi(u_{i}), \phi(t), \phi(t), ..., \phi(t)) \& t_{j+1} &= \\ &= f_{j_{1}}(\phi(t), \phi(u_{i}), \phi(t), ..., \phi(t)) \end{aligned}$$

There exists an endomorphism ψ of W_Δ such that either

$$\mathbf{t}_{h} = \mathbf{f}_{h} \left(\psi \left(\mathbf{t} \right), \psi \left(\mathbf{u} \right), \psi \left(\mathbf{t} \right), \dots, \psi \left(\mathbf{t} \right) \right) & t_{h+1} =$$

= $\mathbf{f}_{\mathbf{h}}$ ($\psi(u)$, $\psi(t)$, $\psi(t)$, ..., $\psi(t)$)

or on the contrary. If $\mathbf{k} = \mathbf{j} + 1$, then evidently $\mathbf{t}_{\mathbf{j}} = \mathbf{t}_{\mathbf{k}+1}$ in all cases, so that $\mathbf{t}_{1}, \ldots, \mathbf{t}_{\mathbf{j}}$, $\mathbf{t}_{\mathbf{k}+2}, \ldots, \mathbf{t}_{\mathbf{m}}$ is a shorter (a, b) -proof of $\mathbf{t}_{\mathbf{m}}$ from \mathbf{t}_{1} , a contradiction. Hence $\mathbf{k} > \mathbf{j} + 1$. For every \mathbf{k} ($\mathbf{j} \leq \mathbf{k} \leq \mathbf{k} + 1$) there evidently exist $\mathbf{w}_{1,2}, \ldots, \mathbf{w}_{\mathbf{m}_{\mathbf{k}}, k}$ such that $\mathbf{t}_{2} = \mathbf{f}_{\mathbf{k}}$ ($\mathbf{w}_{1,2}, \ldots, \mathbf{w}_{\mathbf{m}_{\mathbf{k}}, k}$).

In all cases

 $\begin{bmatrix} t_1, \dots, t_{j}, f_{k} & (w_{2, \frac{j}{2} + 2}, w_{1, \frac{j}{2} + 2}, w_{3, \frac{j}{2} + 2}, \dots, w_{m_k, \frac{j}{2} + 2}), \\ \dots, f_{k} & (w_{2, k}, w_{1, k}, w_{2, k}, \dots, w_{m_k, k}), t_{k+2}, \dots, t_{m} \end{bmatrix}$

is evidently a shorter $\langle a, b \rangle$ -proof of t_m from t_j , a contradiction.

Let us assign to each $t\in W_\Delta$ a natural number $\ell(t)$, called the reduced length of t, in this way: if either $t\in X$ or $t=f_i$ for some $i\in I$, $m_i=0$, then $\ell(t_i)=1$; if $t=f_i(t_1,...,t_{m_i})$ where $m_i\geq 1$, then $\ell(t)=\ell(t_1)+...+\ell(t_{m_i})$.

Let a variable x be given. Denote by $T_{\Delta}(x)$ the set of all $t \in W_{\Delta}$ such that no f_i (where $m_i = 0$) and no variable different from x belongs to S(t).

(S(t) is the set of all subwords of t.)

 Δ -equations (a, ℓ) such that both a and ℓ r belong to $T_{\Delta}(x)$ are called (x, Δ) -equations. The set of all (x, Δ) -equations (a, ℓ) satisfying $\ell(a) = \ell(\ell)$ is denoted by $E_{\Delta}(x)$.

Lemma 2. Let $x \in X$ and $t \in T_{A}(x)$. Then

 $\ell(\varphi(t)) = \ell(t) \cdot \ell(\varphi(x))$ for every endomorphism φ of W_{Λ} .

Proof is easy (by the induction on t).

Lemma 3. Let a variable x, a Δ -theory $E \subseteq E_{\Delta}(x)$ and two elements u, v of W_{Δ} such that $E \vdash \langle u, v \rangle$ be given. Then $\ell(u) = \ell(v)$.

<u>Proof.</u> Applying Lemma 2, it is easy to prove the following assertion by the induction on a: whenever $a \in W_{\Delta}$ and $\&e \mid C_{E}(a)$, then &e(a) = &e(&e).

§ 2. Occurrences of subwords; A -numbers

Let us call a subset A of W_{Δ} admissible if whenever \mathcal{U} , $\mathcal{V} \in A$ and $\mathcal{U} \neq \mathcal{V}$, then \mathcal{U} is not a subword of \mathcal{V} . Let an admissible set A be given. Then we assign to every $t \in W_{\Delta}$ a finite sequence $OCC_{A}(t)$ of elements of W_{Δ} in this way: if either $t \in X$ or $t = f_{i}$ for some $i \in I$, $m_{i} = 0$, then $OCC_{A}(t) = \lceil t \rceil$ in the case $t \in A$ and $OCC_{A}(t) = \emptyset$ in the case $t \notin A$; if $t = f_{i}(t_{i}, ..., t_{m_{i}})$ where $m_{i} \geq 1$, then $OCC_{A}(t) = \lceil t \rceil$ in the case $t \in A$ and $OCC_{A}(t) = OCC_{A}(t_{i}) \otimes ... \otimes OCC_{A}(t_{m_{i}})$ in the case $t \notin A$. Evidently, $OCC_{A}(t)$ is a finite sequence of elements, each of which belongs to A and is a subword of t; an element of A occurs in $OCC_{A}(t)$ if and only if it is a subword of t.

Let two natural numbers m, m be given, $m \ge 2$. Let $h \in I$, $m_h \ge 2$. Then $h_m^{m,1}$ ($h_m^{m,2}$, respectively) denotes the set of all $t = f_h(\alpha_1, ..., \alpha_{m_k}) \in W_A$

such that $L(\alpha_1) = L(\alpha_3) = \ldots = L(\alpha_{m_h}) \, k \, L(\alpha_2) = m \cdot L(\alpha_1) \, (L(\alpha_2) = L(\alpha_3) = \ldots = L(\alpha_{m_h}) \, k \, L(\alpha_1) = m \cdot L(\alpha_2) \,$, resp.) and L(t) = m. Evidently, the sets $h_m^{m,1}$ and $h_m^{m,2}$ are disjoint; put $h_m^m = h_m^{m,1} \cup h_m^{m,2}$. Let us call two elements of h_m^m similar if either they both belong to $h_m^{m,1}$ or they both belong to $h_m^{m,2}$. If $\delta = \begin{bmatrix} t_1, \ldots, t_k \end{bmatrix}$ and $\delta = \begin{bmatrix} t_1, \ldots, t_k \end{bmatrix}$ are two finite sequences of elements of h_m^m , then we write $\delta \approx \delta$ if and only if $\delta = L$ and $\delta =$

Let an element $h \in I$ such that $m_h \ge 2$ be given; let $t \in W_\Delta$. By an h-number of t we mean any natural number $m \ge 2$ such that no element of $h_1^m \cup h_2^m \cup h_3^m \cup \dots$ is a subword of t. Evidently, the set of all natural numbers that are not h-numbers of a given element $t \in W_\Delta$ is finite. By an h-number of a Δ -theory E we mean any natural number $m \ge 2$ such that, for every $(a,b) \in E$, m is an h-number of both a and b.

Lemma 4. Let $h \in I$, $m_h \ge 2$. Let E be a finite Δ -theory. The set of all natural numbers that are not h-numbers of E is finite.

Proof is evident.

If a variable x and an element $h \in I$ such that $n_{h} \ge 2$ is given, then we define elements $x^{1,h}$, $x^{2,h}$, $x^{3,h}$, ... of W_{Δ} in this way: $x^{1,h} = x$; $x^{m+1,h} = \frac{1}{2}$ of $(x^{m,h}, ..., x^{m,h})$.

- Lemma 5. Let $h \in I$, $m_h \ge 2$. Let $m \ge 2$ be a natural number, $x \in X$ and u, $v \in W_{\Delta}$; let $\langle f_h(x, x^{n,h}, x, ..., x), f_h(x^{n,h}, x, x, ..., x) \rangle \vdash \langle u, v \rangle$. Put $m^* = L(x^{n,h})$. Then
- (i) for every natural number m the sequences $OCC_{h_m^{m^*}}(u)$ and $OCC_{h_m^{m^*}}(v)$ have an equal number of members;
- (ii) if $u \neq v$, then there exists a natural number k such that $OCC_{k}(u) \approx OCC_{k}(v)$ does not hold.

Proof. We shall write OCC_m instead of $OCC_{m_m}^*$, as n and n^* are fixed here. Put $e = \{f_m(x, x^{n,h}, x, ..., x), f_m(x^{n,h}, x, x, ..., x)\}$. We shall prove by the induction on m that whenever m is an element of M_A such that $e \vdash (m, m)$, then (i) and (ii) take place. If either $m \in X$ or $m = f_i$ for some $i \in I$, $m_i = 0$, then m = m and everything is evident. Let $m = f_i(m_1, ..., m_{n_i})$, where $m_i \ge 1$. By Lemma 1, it is sufficient to consider the following two cases:

Case 1: Some \mathscr{E} -proof of \mathscr{V} from \mathscr{U} contains no leap. Then there evidently exist v_1,\ldots,v_{m_i} such that $v=f_i(v_1,\ldots,v_{m_i})$ and $\varepsilon\vdash \langle u_1,v_1\rangle,\ldots$, $\varepsilon\vdash \langle u_{m_i},v_{m_i}\rangle$. By Lemma 3 we have $\mathscr{L}(\mathscr{U})=\mathscr{L}(v),\mathscr{L}(u_{n_i})=\mathscr{L}(v_{n_i})$. Let us prove (i). If $m>\mathscr{L}(\mathscr{U})$, then $\mathscr{OCC}_m(\mathscr{U})$ are both empty; if $m<\mathscr{L}(\mathscr{U})$, then the assertion follows from the induction hypothesis; it re-

mains to consider the case $m = \ell(u)$. If $m_{\ell} = 1$, then $OCC_m(u) = OCC_m(u_1)$ and $OCC_m(v) =$ = 0000 (v_1), so that the assertion follows from the induction hypothesis. If $m_{i} \ge 2$, then $OCC_{m}(\omega)$ is either empty or equal to "" and similarly for $OCC_m(v)$; if one of the elements u and v belongs to $\mathcal{A}_m^{n^*}$, then from $\ell(u_q) = \ell(v_q), ..., \ell(u_{n_i}) =$ = $\ell(\nu_{m_2})$ it follows that the other belongs to $k_m^{n_m}$, too. (i) is thus proved. Let us prove (ii). If u + v, then $u_i \neq v_i$ for some j $(1 \leq j \leq m_i)$; by the induction hypothesis there exists a number A such that $OCC_{k}(u_{j}) \approx OCC_{k}(v_{j})$ does not hold. We have $u + h_h^{n}$, because otherwise $n_i = n_h \ge 2$ and simultaneously $\ell(u) = k \leq \ell(u_i)$ would take place. Similarly $v \notin h_{k}^{m}$. From this and from the fact that by the induction hypothesis (i) holds for u_4, \dots ..., u_{m_1} , we get that $OCC_{k_1}(u) \approx OCC_{k_2}(v)$ not hold.

Case 2: Some $\mathscr E$ -proof of $\mathscr V$ from $\mathscr U$ contains exactly one leap. Then evidently i=n and there exist v_1,\ldots,v_{m_n} such that $v=f_{n_1}(v_1,\ldots,v_{m_n})$ and $e\mapsto \langle u_1,v_2\rangle, e\mapsto \langle u_2,v_1\rangle, e\mapsto \langle u_3,v_3\rangle,\ldots, e\mapsto \langle u_{m_n},v_{m_n}\rangle$. Let us prove (i). If $m>\ell(\mathscr U)$, then $\mathcal OCC_m(\mathscr U)$ and $\mathcal OCC_m(\mathscr V)$ are both empty; if $m=\ell(\mathscr U)$, then $\mathcal OCC_m(\mathscr U)=\lceil \mathscr U\rceil$ and $\mathcal OCC_m(\mathscr V)=\lceil \mathscr V\rceil$; if $m<\ell(\mathscr U)$, then the assertion follows from the induction hypothesis. For the proof of (ii) it is sufficient to put $\ell(\mathscr U)$, we have evidently $\ell(\mathscr C)$, $\ell(\mathscr U)=\lceil \mathscr U\rceil$ and

 $OCC_{k}(w) = [v]; [u] \approx [v]$ does not hold.

Lemma 6. Let $h \in I$, $m_h \ge 2$. Let a variable x, an element $t \in T_{\Delta}(x)$, an h-number m of t and an endomorphism φ of W_{Δ} be given. If some $w \in h_1^m \cup h_2^m \cup h_3^m \cup \dots$ is a subword of $\varphi(t)$, then it is a subword of $\varphi(x)$.

Proof (by induction on t). The case t=x is evident. Let $t=f_i(t_1,...,t_{m_i})$ where $m_i \ge 1$. Let $w=f_h(\alpha_1,...,\alpha_{n_h}) \in h_m^n$ be a subword of $\varphi(t)$. We have $w \ne \varphi(t)$, as $w=\varphi(t)=f_i(\varphi(t),...,\varphi(t_{n_i}))$ would imply i=h and $\alpha_i=\varphi(t_1),...,\alpha_{n_h}=\varphi(t_{n_h})$, so that by Lemma 2 easily $t\in h_{\ell(t)}^m$, a contradiction. Consequently, w is a subword of $\varphi(t_i)$ for some $i=(1 \le i \le m_i)$; by the induction hypothesis (we may apply it, because m is an h-number of t_i , as well), w is a subword of $\varphi(x)$.

Lemma 7. Let $M \in I$, $m_k \ge 2$. Let a variable x, an element $t \in T_{\Delta}(x)$, a natural number $m \ne \ell(\varphi(x))$ and an endomorphism φ of W_{Δ} be given. Then $OCC_{h_{m_k}}(\varphi(t)) = (OCC_{h_{m_k}}(\varphi(x)))^{(\ell(t))} \text{ for every } m \ge 2.$

Proof (by induction on t). The case t=x is evident. Let $t=f_i(t_1,\ldots,t_{m_i})$ where $m_i\geq 1$. Write OCC instead of OCC_{hm} . If $m_i\geq 2$, then we get $\varphi(t)\notin h_m^n$ from $m\leq \ell(\varphi(x))$; hence, $OCC_{l}\varphi(t)=OCC_{l}\varphi(t_1)$ $\otimes\ldots$ \otimes $OCC_{l}\varphi(t_{m_i})=(OCC_{l}\varphi(x))^{\ell\ell(t_{m_i})}\otimes\ldots$ \otimes $OCC_{l}\varphi(x)^{\ell\ell(t_{m_i})}\otimes\ldots$ \otimes $OCC_{l}\varphi(x)^{\ell\ell(t_{m_i})}\otimes\ldots$

If $m_i = 1$, then OCC $g(t) = OCC g(t_1) =$

 $= (OCC \varphi(x))^{\lceil \ell(t_q) \rceil} = (OCC \varphi(x))^{\lceil \ell(t) \rceil}$

Lemma 8. Let $h \in I$, $m_h \ge 2$. Let $x \in X$, $\mu \in W_\Delta$ and $\langle a, b' \rangle \in E_\Delta(x)$; let m be an h-number of both a and b. Then the following holds: whenever some v is an immediate consequence of μ by means of $\langle a, b' \rangle$, then $OCC_{h_m}(\mu) \approx OCC_{h_m}(v)$ for every m.

Proof (by induction on μ). Write OCC instead of OCC_{h_m} . If either $u \in X$ or $u = f_i$ for some $i \in I$, $m_i = 0$, then either v = u or there exists a finite sequence i_1, \ldots, i_k of elements of I such that $m_{i_1} = \ldots = m_{i_k} = 1$ and $v = I_{i_1}(f_{i_2}(\ldots f_{i_k}(u)\ldots))$; evidently, in all cases the sequences OCC(u) and OCC(v) are both empty. Let $u = f_i(u_1, \ldots, u_{m_i})$ where $m_i \ge 1$.

Let firstly there exist a j $(1 \le j \le m_i)$ and a $w_i \in W_\Delta$ such that $v = f_i(u_1, ..., u_{i-1}, v_i, u_{j+1}, ..., u_{m_i})$ where w_i is an immediate consequence of u_i by means of (a, b). By Lemma 3 we have $l(u_i) = l(v_i)$. If m > l(u), then OCC(u) and OCC(v) are both empty. If m < l(u), then the assertion follows from the induction hypothesis. Let m = l(u). If $m_i = 1$, then $OCC(u) = OCC(u_1)$ and $OCC(v) = OCC(v_1)$, so that the assertion follows from the induction hypothesis. If $m_i \ge 2$, then OCC(u) is either empty or equal to $u_i = l(v_i)$ we get easily $OCC(u) \approx OCC(v)$.

Let secondly there exist an endomorphism ϕ of

 W_{Δ} such that $u = \varphi(a)$ and $v = \varphi(b)$. In this case we prove OCC(u) = OCC(v). Suppose on the contrary that this does not hold. Evidently, some element of \mathcal{H}_{m}^{n} is a subword of either u or v. By Lemma 6 we have $m \leq \ell(\varphi(x))$ and by Lemma 7 we get $OCC(\varphi(a)) = OCC(\varphi(b))$.

§ 3. The existence of upper semicomplements

Let us denote by ι_{Δ} the greatest and by ν_{Δ} the smallest element of \mathcal{L}_{Δ} . If α and ν are two elements of \mathcal{L}_{Δ} , then their supremum in \mathcal{L}_{Δ} is denoted by α $\vee_{\Delta} \mathcal{L}$ and their infimum by α $\wedge_{\Delta} \mathcal{L}$. An element α of \mathcal{L}_{Δ} is called upper semicomplement in \mathcal{L}_{Δ} if there exists a $\nu \in \mathcal{L}_{\Delta}$ such that $\nu + \iota_{\Delta}$ and α $\vee_{\Delta} \mathcal{L} = \iota_{\Delta}$.

To each Δ -theory E there corresponds an element in \mathcal{L}_{Δ} ; this element was denoted by Cn (E) in [2].

Theorem 1. Let Δ be a type such that $m_h \geq 2$ for some $h \in I$. Let x be a variable and E a finite set of (x, Δ) -equations such that whenever $(a, b) \in E$, then l(a) = l(b). Then Cn(E) is an upper semicomplement in L_{Δ} .

<u>Proof.</u> By Lemma 4 there exists a natural number $m \ge 2$ such that the number $m^* = \ell(x^{m,h})$ is an ℓ -number of E. Put $\ell = (f_{\ell}(x, x^{m,h}, x, x, ..., x))$, $f_{\ell}(x^{m,h}, x, x, x, ..., x)$. It is sufficient to prove

 $Cn(E) \vee_{\Delta} Cn(e) = \iota_{\Delta}$. Suppose on the contrary that there exists a \triangle -equation $\langle \mu, \nu \rangle$ such that u + v, $E \vdash \langle u, v \rangle$ and $e \vdash \langle u, v \rangle$. By Lemma 5 there exists a natural number & such that $OCC_{\mathbf{A}_{n}^{m^{*}}}(u) \approx OCC_{\mathbf{A}_{n}^{m^{*}}}(v)$ does not hold. Lemma 8 implies $OCC_{h_m^{m+}}(u) \approx OCC_{h_m^{m+}}(v)$, a contradiction.

Remark. Let again Δ be such that $m_h \ge 2$ for some $h \in I$; let $x \in X$. By Theorem 1, Cn(E) is an upper semicomplement in \mathcal{L}_{Δ} for every finite subset E of $E_{\Lambda}(x)$. ($E_{\Lambda}(x)$ is the set of all (x, Δ) equations $\langle a, L \rangle$ such that $\mathcal{L}(a) = \mathcal{L}(L)$.) However, if $m_i \ge 1$ for all $i \in I$, then $Cn(E_A(x))$ is not an upper semicomplement. This follows easily from Lemma 7 of [3].

§ 4. Some supplements

For every $t \in W_A$ let Var(t) be the set of all variables that are subwords of t . Let us denote by the set of all \triangle -equations $\langle a, \ell r \rangle$ satisfying Var(a) = Var(b). It is easy to prove that SL, is a fully invariant congruence relation of W_{Δ} , so that $SL_{\Delta} \in \mathcal{L}_{\Delta}$. Evidently, $SL_{\Delta} + \nu_{\Delta}$. Theorem 2. For every type \(\Delta \), whenever E is an upper semicomplement in \mathcal{L}_{Δ} , then $\operatorname{SL}_{\Delta} \leq_{\Delta} \operatorname{E}$, i.e. $E_{\lambda} \subseteq SL_{\lambda}$.

Proof. Suppose on the contrary that there exists an equation $\langle a, b \rangle \in \mathbb{E}$ such that $Var(a) \neq Var(b)$; let e.g. Var(a) \$ Var(b); choose a variable

 $x \in Vax(a) \setminus Vax(b)$. As E is an upper semicomplement, there exists an equation $\langle c, d \rangle$ such that $c \neq d$ and $Cn(\langle a, b^c \rangle) \vee_{\Delta} Cn(\langle c, d \rangle) = \vee_{\Delta}$. There exists a unique endomorphism φ of W_{Δ} such that $\varphi(x) = c$ for all $x \in X$; there exists a unique endomorphism ψ of W_{Δ} such that $\varphi(x) = d$ and $\varphi(x) = c$ for all $x \in X \setminus \{x\}$. We have evidently $\langle a, b^c \rangle \vdash \langle \varphi(a), \psi(a) \rangle$, $\langle c, d^c \rangle \vdash \langle \varphi(a), \psi(a) \rangle$ and $\varphi(a) \neq \psi(a)$, a contradiction.

Theorem 3. Let Δ be arbitrary. If α and b are two elements of \mathcal{L}_{Δ} such that $\alpha \vee_{\Delta} b = \iota_{\Delta}$ and $\alpha \wedge_{\Delta} b = \nu_{\Delta}$, then one of them is equal to ι_{Δ} and the other is equal to ν_{Δ} .

Proof follows from Theorem 2.

Theorem 4. Let Δ be arbitrary. If a_1, \ldots, a_m $(m \ge 1)$ are elements of \mathcal{L}_{Δ} such that $a_1 \lor_2 \ldots \lor_2 a_m$ is an upper semicomplement in \mathcal{L}_{Δ} , then at least one of them is an upper semicomplement in \mathcal{L}_{Δ} .

<u>Proof</u> is trivial; the corresponding assertion holds in all lattices.

Theorem 5. Let Δ be such that $m_i \ge 1$ for some $i \in I$. Let $a_1, ..., a_m$ $(m \ge 1)$ be atoms in \mathcal{L}_{Δ} . Then $a_1 \vee_{\Delta} ... \vee_{\Delta} a_m$ is not an upper semicomplement in \mathcal{L}_{Δ} . Consequently, ι_{Δ} is not the supremum of a finite number of atoms in \mathcal{L}_{Δ} .

<u>Proof.</u> By Theorem 4 it is enough to prove that no atom is an upper semicomplement. This follows from Theorem 3.

Remark. Bolbot [1] proved (for types Δ as in Theorem 1) that there exists a set A of atoms in \mathcal{L}_{Δ} such that ι_{Δ} is the supremum of A and $Card A = \mathcal{H}_{o} + Card I$.

<u>Problem.</u> Consider, for example, only the most important case: I contains a single element ι and $m_i=2$. (Algebras of type Δ are just groupoids.) Find all Δ -equations e such that Cn (e) is an upper semicomplement in \mathcal{L}_{Δ} .

References

- [1] A.D. BOL'BOT: O mnogoobrazijach Ω -algebr, Algebra i logika 9,No 4(1970),406-414.
- [2] J. JEŽEK: Principal dual i eals in lattices of primitive classes, Comment. Math. Univ. Carolinae 9(1968),533-545.
- [3] J. JEŽEK: On atoms in lattices of primitive classes,

 Comment.Math.Univ.Carolinae 11(1970),

 515-532.

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, Praha 8 Československo

(Oblatum 5.2.1971)