#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1971
PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012 | log44

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

Commentationes Mathematicae Universitatis Carolinae

12,3 (1971)

ONE REMARKABLE PROPERTY OF THE BICYCLIC SEMIGROUP

P. GORALLfK, Praha

Given an algebraic monoid M = (X, e,+) - a set
X together with an associative multiplication posses-
sing an identity element e, it may happen that from
oﬁr knowledge of the multiplication on the left by a
single element @ in X , i.e. from the amount of "in-

formation" about M represented by its left transla-

tion £, ,
(1) £, (x) = a.x for all x in X
we can determine M uniquely. That means, we can say,

in a unique way, which element ¢ in X is the identi-
ty element of M , and, what is the product X.q4 of
an arbitrary ordered pair (x, /y,) of elementa of X ,
Let us call such an element @ in X a left determi-
ning element and the left translation £¢’ ‘correspond-
ing to it a determining left tg'anslatign of M , Repla-
cing M by the monoid M™  opposite to M we get
the dual notions of a right determining element and of
& determining right translation.

AMS Classification,Primary 20M20
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Any monogeneous monoid M = {@ ) is an example
of a commutative monoid having (both left and right)
determining element - just the generator a , in this
case. A question was, whether there existed any non-
commutative monoids possessing both a left and a right
determining element - we shall call them non-commuta-
tive (1,1)-monoids. The present paper aims in the proof
that, essentially, the only one noncommutative (1,1)-
monoid is the well known bicyclic semigroup B=<a,t)
with the identity € and the two generators a,f sa-
tisfying the defining relation
(2) alr = e .

More precisely, we state

Theorem 1. There are exactly two non-commutative
(1,1)-monoids: the bicyclic semigroup B and B° - the

B with zero adjoined.

More elementary description identifiea B with
the set N x N of all ordered paira (m,m ) of non-
negative integers. supplied with the multiplication

(K, b=m +m) for » 2 m ,
(3) (m,m)n,n) = {

(n+m -p,m) for < m .
Then we have a = (1,0), & = (0,1), e = (0,0) . The
left translation £, has a form
(rR,h=4) tar » = 4,
(k+1,0) for » = 0,

and it is worth while to visualize it as follows:

(4) 2, (x,n) = (1,00(h,5) =
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(0,0) €«=——(0,1) €&— (0,2) €«— (0,3) &— .,,

—

(1,0) €e—— (1,1) &&—— (1,2) «——(1,3) &«—. ...

<«

(2,0) &—— (2,1) &—— (2,2) &«e—(2,3) €&— ...

(3,0) €— (3,1) €— o

,0
\‘l/ Fig. 1

To prove Theorem 1, we shall start with a general
transformation £: X —> X and, under the assumption
that £ be a left determining translation of some non-
commutative (1,1)-monoid, we shall specify etep.by step
its form, finally showing £ to be isomorphic with £
described by (4) (possibly extended by a single fixed
point), and £,
translation of B (or of B° when extended by a fixed

in its turn, to be a determining left

point).

The whole proof will be carried out in a sequence
of Statements 1 - 8 and it depends essentially on pa-
pers [11,(2]1,[3] whose results are restated here with-

out proofs as Statements 1 - 4.

A transformation system, or shortly a T -system,
is a couple (X ,8) , where X is a set and § c x*

is a set of transformations of the set X , i.e. the
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members of & are mappings of the form £ : X— X .
A T-system (X,F) is a T -monoid if
(5) '1x € F

where 4)( is the identity transformation of X , and
(6) f{,9eF = £g €F ,
where £g is a composite transformation written left-

hand, i.e.

(7 £g (x) = £(g-(x)) for xe X .

For any T -system (X, S ) there is defined a T -mo-
noid (,X,C(S)) called the centralizer of (X,S) by

(8) C(S)={geX*lfg =gt forall £in 817 .

A point A is a gource (exact source) of a T -system
(X,S5) if for every x in X there exists (unique)
f in & with £(s) = X, For an algebraic monoid
M =(X,e,.) designate by (X ,L(M)) and(X,R(M))

ite T -systems of all the left and all the right trans-

lations, respectively. Call a T -monoid (X,F) a re-
gular T -monoid if there exists an algebraic monoid

M= (X,e,.) such that F = L(M) ., A transformation
£ contained in some regular T -monoid will be cal-

led a (potential) translation.

Statement 1. The following three assertions about a
T -system (X, S) are equivalent:
() (X ,S) is a regular T -monoid,
(B) (X,S) is a T-monoid with an exact source,
() (X,S5) ana (X,C(S)) have a common source.
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If these assertions hold, then for each exact sour-
ce @ of the regular T -monoid (X,.SJ there exists
8 unique algebraic monoid M = (X, e, -) with LiM)=S,
whose multiplication is defined by
(9) Xong = £ (g) |
where £, is the unique member of § with £,(e) = x.

Let a transformation £3: X — X be given. A sub-
set A of X is stable with regard to £ if £(A)c A.
A transformation gsA—> A is induced by £ on its

stable subset A if g (x) = £(x) for every x in A .
The kernel Q‘p of £ is the union of all the subsets A
of X such that £(A)= A, i.e. @, is the greatest
stable subset such that the transformation induced on it
by £ is surjective. Qf course, Q# may be empty. The
kernel Qﬁ of £ is called an increasing kernel if the
transformation induced on it by # is not injective and
is called a bijective kernel otherwise.

For a given x in X , the intersection of all
stable subsets of £: X —>» X containing x ia the
path P# (x) of x formed by all iterates of X by £ 3

(10) PF(.x)a{f'"’(.x)ImBO} .

Two element. x, y of X are E.' -equivalent if their
Paths meet, i.e. if £™ (x)=£™(x) for some non-nega-
tive integers m , m . The relation Ef_ on X thus
defined is an equivalence relation by which X is de-
composed into components of £ , By E¢ (x) is denoted
the component containing X , A transformation £ is
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connected if all elements of X are mutually E, -equi-
valent, otherwise it is disconnected. Call £ : X—X
a guasi-connected transformation if it either is connec-
ted or has exactly two components one of which consists
of a single point.

Statement 2. Any quasi-connected potential transla-
tion with bijective kernel and no one with an increasing
kernel is a translation of a commutative monoid.

An element x in X is called a cylic element of

f: X—X if x 6 T, (£(x)) . The get Z, of all
cyclic elements of £ may be empty in the case X is
infinite. If £ has no cyclic elements then an equality
£™(x) = £™(x) holds if and only if m = m .

Statement 3. A connected non-surjective transforma-
tion £ : X—> X with an increasing kernel is a poten-
tial translation if and only if

(i) Z; =0,

(ii) there exist ¢ in X and h:Q —> (2‘ such
that £™(X)c G, whenever £ (e)e @, ,

(11) Fh(x) = x for all x in G, ,

(12) h(G.‘,) NnF(e)= a .

Call £: X—> X an increasing transformation if
it is surjective but not injective. It is "increasing"
in the sense that for some proper subset ¥ of X it
is £(Y) = X ,

Statement 4. A connected increasing transformation

£: X—> X is a potential translation if and only if
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34 = g and there exista an element ¢ in X and
an injection g in C(f) such that
(13) £(e) = g(e) and g(t)% € for any t in X with
f£(t)= ¢ .

Moreover, for any fixed € and g satisfying
(13) there exists a regular T -monoid (X, F) auch
that £ € ¥ and g €« C(F) .

For proofs of Statements 1 - 4 see [1] ,(2],(3].

Statement 5. Any determining left translation
£: X — X of some (1,l)-monocid M = (X, e,r) is qua-
si-connected. If it is disconnected, then X-E‘, ()=1ix}
and M = K° (a monoid X with zero adjoined) , where
K= (Ef (e),e,°) is a (1,1)-submonoid of M  with the
same determining elements (left or right) as M and z
is the zero adjoined.

Proof: Assume £ disconnected and define a monoid

M= (X,e, ) by

X.n for X eE,(«e),

(14) X % .{
L X forch-E'(e).

The left translation £ of M corresponds to the e-
lement £(e) contained in 24 (¢), hence £ is, by
(14) , also a left translation of M’ , and,since £ is
a determining left translation of M , it ia M = M’,
By (14), X= (E,, €,°) is a submonoid of M and all
elements in X - E,’ (e) are left zeros of M .

Now, M has ulso a determining right translation
g which is disconnected, since E& (e) and X -

- E‘,‘= (e) are disjoint stable subsets of every right
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translation of M ., So g is a disconnected determi-
ning left translation of a (1,l)-monoid M°"™  opposi-
te to M . By the same argument as applied above to £,
we conclude that M®™ must have a left zero, i.e. M
has a right gero. It follows that X - Ec(e) contains

- exactly one point, the bothsided outer zero X of M .
Clearly, elements determining M are the same as tho-
se determining K = M-12% .

Statement 5 enables us to regard only connected de-
termining translations of (1,1)-monoids since all dis-
connected ones can be obtained from them by a single fi-
xed point extension.

Statement 6. A connected determining left transla-
tion £ s X~ X of a non-commutative (1,1)-moncid M
must be surjective.

Proof: Assume £ not to be surjective. By State-
ment 2, £ must have an increasing kernel, hence State-
ment 3 applies.

Starting with ¢ and 4% 04—> 04 satisfying the
condition of Statement 3, we shall give a construction
of a regular T -monoid (X, F») containing £ :

For every x in X define a non-negative integer

(15) wlx) = min it | £*(x)a @3 .

Designate by Y’ the set of all X in X such that
24 (%) € '.P‘ (), i.e. £4Xx) = £™(e) tor some

m & 0, Since 24 = f by Statement 3, such m is
unique and we can define for ovory: X in Y’ " a non-

.
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negative integer d (x) by

(16) d(x)= m - w(x) if §™(e)= £4“(x) .

Since Z‘ = g , we can decompose X into classes
Tﬂ’% so that
X e T, , if and only if f1,q are the least

non-negative integers such that
$1 4@ (o) m g2 (x)

i.e. if for some n' o’ p'&pn, ¢’ £ 2 , it holds
O o) w220 x) , then p'=p and @' =g .
Now, for every X in X define a transformation

£x‘

For x e 11’, put

(18) £, (e) = x ,

£, (t) = £ () for t 4 € 4
for x e Tne~ Y%
(19) £, (e) = x ,

£, (6) = APt tor £ 4 o€ .

The T -system (X, F,), F, ={f,Ix€ X% ,has ¢ for
its source and its centralizer is formed by a system of
transformations C(E, ) = { % Iy € X%, defined as
follows:

Put e = 4x - the identity transformation, and
for oy % € put
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£4Yy) torteV, ,

(20) g, ()= { -
AT ™M) tor t e T,m,m'- K .

After checking mutual commutativity of f.x and q,‘v_
for arbitrary x,q4 in X ,it is seen immediately that
€ is a common source of both (X,F, ) and (X,C(E ),
hence by the "regularity condition" (C) of Statement 1
(X, ) is a regular T-monoid, and £ = ey *

Let &' 04—-7 Q’ be another transformation sa-
tisfying ,together with the same € as above, the condi-
tions of Statement 3 and let us construct, by the con-
struction just described, the corresponding reguler T-
monoid (X, F,,), F, ={£, lxe X ¥ . If W4k,
then also T, # F, : Assume M'(t) % h(t)in some
point ¢+ of 04 . Choose some X in To,q - 14 , €8 Xs=
= hf"‘“’(«e),and 4 in G, such that £4®'(p) = t .
Then by (18) we have

£,(8) = ME“(p) = ML),

whereas

£, (p) = MECC(p) s mi(t)

that is, £, & £, and hence EF 4 F,, .

Since £ . is, by assumption, a determining transla-
tion,the two regular T -monoids F,, and Fh cannot
be distinct. This means that the transformation h: @ -+
~ Q¢ satisfying the conditions of Statement 3 must
be unique. On the other hand, every choice function on

the disjoint family of seta
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(1) (£7x)n Q) - B Ce), xeQ,

meets these conditions. It follows that each member of
the family (21) must contain exactly one point, which
amounts to saying that Tm’m_ N 04 congists of a
single point .xm’” for every pair (tm,m) of non-
negative integers. The assignment of (m,m.) to Xm,m
establishes an isomorphism between the transformation
induced by £ on its kernel 04 and the transformation
f, defined by (4). Note that (0,0) is assigned to
£4(e) - the first of iterates of e by £ which
is contained in the kernel Q.F of £ ,

We have proved, thus far, that the only regular T-
monoid containing f is (X, Ph) described by (18),

(19) with the only possible & : Q¢ — Qf given by

(22) h(xm_m)=x for every m, m = 0 .

m,meq

It remains to show that (X,C(F,)) does not con-
tain any determining translation. Using the description
(20) of C(F, ) , we can easily see that for every y
in ¥ or in T

f '
transformations %‘_ are not quasi-connected: For 4

Vo with u(e)+p-q % 1 the

in 'Vf, as well as for any 4 in T‘h-.g, - K, with

wlel+pn -9 20 the sets V. and X - 1, are

disjoint infinite stable sets of q,,_; for 4 in 'I‘ﬂ_'g -
:Vc with d = g - (w(e)+ o) 2 2 we have

-
o and i-"-)o Tﬂ

o Tﬂ,dd. disjoint stable

yid 41
sets of q«,’_ %
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Our last step it will be to show that also 9«,’_
for an arbitrary 4 in T, . ce)epeq 2 1 = 0 , fail
to be determining translations of ( (};v) . Using (20),

we have
(23) g ( Y AFECOBI L B e .
: ¥y K+ien,s ¥ 2 nrin0’ = Teri i

for all + 2 0 and arbitrary Z & 4, This means that

all the points X for ¥+ =2 0 and 3 2 4 are con-

hei, g
tained in the kernel of . Since we have
%, °f %

) -

9’3.“1:.&(‘),-44-4 = ‘xp,au)ﬁuz = 9’1-("‘1!*4.“““4!-#2

the point X, . corpmes = g,f'_ (e) cannot be the
first iterate of ¢ by % contained in the kernel of
9«,". It Y= xﬁ'““”ﬁ*q we are in precisely the same si-

tuation because of

e

)=

%(“«,uwm- X (ot ien ™ B (Xpat,ucerensa

In the case gy # X n is not in Q‘ , there-

ik (@) 4 4
fore by (20) it is Q*Ct) = only ift 6 V, and d(t)=
= 0 . Since there is no A with P ()= ¢t for such a

t , it follows that neither g4 = %_(e) nor € = g.;(e)
is in the kernel of q«," .

So in (x,c(f;')) there is no determining transla-
tion - a contrad:}ction due to the assumption that £ is
not surjective.

Statement 7.A connected and surjective determining
left translation of a non-commutative (1,1)-monoid M
must be isomorphic to the transformation fa. given by
(4). '
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Proof: By Statement 2, £ must be increasing. By
Statement 4, we can choose an element € in X and an
injection g in C(£) satisfying (13). Since, by Sta-
tement 4, £ has no cyclic points, every X in X de-
termines uniquely the least non-negative integers

m (x),m(x) such that

(24) EMmN (o) m 27N (k)

This defines a decomposition of X into classea Tm,m
such that x € T~ if and only if m(x)zm, m(xX)=m,
4
Next we shall prove that

(25) 9(T,,) cT

med, m

for all m, m = 0 ,

From (13) it follows that for every m, m = 0 , it
is gf™(e) = £™g (&) = £™*1(e) = ££™ (e) , thus
q(Tm’o) = T"'lﬂ,a , since clearly Tm,a = {£™(Ce)?} .

From £g.(t)= q,f(-!:) we get
(26) g(t) e £7(g£(t)) for te X .

If teT,, = £7Ce), then g£(¢) = gle) = £(e) , and,

by (26), g(t) e £7'C#(eN= T, U {e} . But by (13)
it is g (t) % €, thus g(t) & T,4 @nd hence (T, e
c T, -

If teT,, form 24  then it is g (t) = gf™(e)=
=£™%e) ,and, by (26),4.(t) € £'(£™*(e)) m Tups,q U CE™(RIE,
Since g is injective, it follows from g,£“'1Ce)= £MCe)
and from t 4 £™(e) that g(t) & £™(e), Thus
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Q.(f) € Tm+1 4 7 and we conclude that 9.('1'%4):
L]

& Tm+4,1 ¢

We have yet proved the inclusion (25) for m =
= 0,1 and all m = 0, Assume that (25) holds for
some m = 4 and for all m = 0., Since for any € in
Tmmeq it isf(t)eT, . , we havegf(t)e T, .,
and, by (26), q(‘t)ef"('l;‘ﬁ,“) - Tm+4,u+4 » which
completes the proof of (25).

From (25) it follows that no T, is void, sin-

yn

ce ’I;,” & g for all m = 0, On the other hand, each

»
class Tm'“ contains at most one point: If le'“l >4

for some m,m ,choose x in T, . end 4 inT, , .,

8o that 4 # ¢ (x) and define g’ by
£™ (g for t= %), = 0,4,...,m -1,

(27) q’cf). {
¢ (t) otherwise.

We have g’(x) s @ (x) while ¢’ is easily shown to sa-
tisfy the conditions (13). By Statement 4, there exist
regular T -monoids (X,F) and (X,F’) , both contain-
ing £ , with ¢ in C(F) and ¢’ in C(F’). Since
g ® g ,it is C(F’) % C(F) and thus F’ & F , in
contradiction with £ being a determining translation
of M .

Let us identify the set X with the set Nx N of
all ordered pairs of non-negative integers so that
(m,m) denotes the single point contained in the
class Tm'“ . The transformation £ then coincides

with £ described by (4).
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Statement 8. The element (1,0) is a left determi-

ning element of the bicyclic semigroup B as defined
by (3).

Proof: The only possible choice of ¢ and of an
injection g¢. in C“w) satisfying (13) for £, @given
by (4) is e =(0,0) and
(28) g(m,m)=(m+4,m) for all m, m = 0 .
By Statement 4, there exists a regular T -monoid
(NxN,F) with § in F and ¢ in C(F) . InF¥F
there must be a transformation & such that Mn(0,0)=
= (0,1) ., Since $:m (0,0) = (0,0) ,itisfth (m,m) =
= (m,m)for all m,m and therefore
(29) M0, m)=Mm(0,m+1) for all m 20 .
Using commutativity of g and 4 it follows from (28)
and (29) that
(30) him,m)=(m,m+4) for all m, m = 0,

By Statement 1, the unique multiplication on N x N
with the identity (0,0) for which F is the system of

all the left translations is given by

(31) (m,m)(n,n) = £ (k, ) ,

(m,m)

where £ is the only member of F with £ m,€0,0) =

=#n™£™ and (31) is easily

m,m)

=(m,m) .But clearly f‘m'm
checked to give the same multiplication as (3), i.e. the

multiplication in B .
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