

Werk

Label: Article **Jahr:** 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log44

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 12,3 (1971)

ONE REMARKABLE PROPERTY OF THE BICYCLIC SEMIGROUP

P. GORALČÍK, Praha

Given an algebraic monoid $M=(X,e,\cdot)$ - a set X together with an associative multiplication possessing an identity element e, it may happen that from our knowledge of the multiplication on the left by a single element a in X, i.e. from the amount of "information" about M represented by its left translation f_a ,

(1) $f_a(x) = a.x$ for all x in X, we can determine M uniquely. That means, we can say, in a unique way, which element e in X is the identity element of M, and, what is the product x.y of an arbitrary ordered pair (x,y) of elements of X. Let us call such an element a in X a left determining element and the left translation f_a corresponding to it a determining left translation of M. Replacing M by the monoid M^{opt} opposite to M we get the dual notions of a right determining element and of a determining right translation.

AMS Classification, Primary 20M20

Any monogeneous monoid $M = \langle a \rangle$ is an example of a commutative monoid having (both left and right) determining element - just the generator a, in this case. A question was, whether there existed any non-commutative monoids possessing both a left and a right determining element - we shall call them non-commutative (1,1)-monoids. The present paper aims in the proof that, essentially, the only one noncommutative (1,1)-monoid is the well known bicyclic semigroup $B = \langle a, b \rangle$ with the identity e and the two generators a, b satisfying the defining relation

$$(2) ab = e .$$

More precisely, we state

Theorem 1. There are exactly two non-commutative (1,1)-monoids: the bicyclic semigroup \mathcal{B} and \mathcal{B}^o - the \mathcal{B} with zero adjoined.

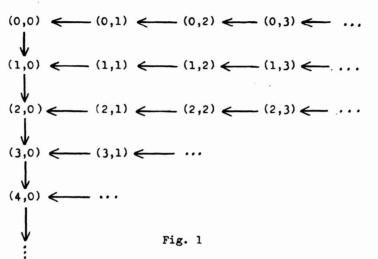
More elementary description identifies B with the set $N \times N$ of all ordered pairs (m, m) of non-negative integers supplied with the multiplication

(3)
$$(m,m)(n,b) = \begin{cases} (n,b-m+m) & \text{for } b \ge m, \\ (n+m-b,m) & \text{for } b < m. \end{cases}$$

Then we have $\alpha = (1,0)$, b = (0,1), e = (0,0). The left translation f_{α} has a form

(4)
$$\pm_{\alpha}(\kappa, \delta) = (1,0)(\kappa, \delta) = \begin{cases} (\kappa, \delta - 1) & \text{for } \delta \ge 1, \\ (\kappa + 1, 0) & \text{for } \delta = 0, \end{cases}$$

and it is worth while to visualize it as follows:



To prove Theorem 1, we shall start with a general transformation $f: X \longrightarrow X$ and, under the assumption that f be a left determining translation of some non-commutative (1,1)-monoid, we shall specify step by step its form, finally showing f to be isomorphic with f_{a} described by (4) (possibly extended by a single fixed point), and f_{a} , in its turn, to be a determining left translation of B (or of B^{o} when extended by a fixed point).

The whole proof will be carried out in a sequence of Statements 1 - 8 and it depends essentially on papers [1],[2],[3] whose results are restated here without proofs as Statements 1 - 4.

A transformation system, or shortly a T -system, is a couple (X,S), where X is a set and $S \subset X^X$ is a set of transformations of the set X, i.e. the

members of S are mappings of the form $f: X \to X$. A T-system (X, F) is a T-monoid if (5) $1_X \in F$

where 1_X is the <u>identity transformation</u> of X, and (6) f, $g \in F \implies fg \in F$, where fg is a <u>composite transformation</u> written left-hand, i.e.

(7) fg(x) = f(g(x)) for $x \in X$.

For any T-system (X, S) there is defined a T-monoid (X, C(S)) called the <u>centralizer</u> of (X, S) by

(8) $C(S) = \{g \in X^X | fg = gf \text{ for all } f \text{ in } S \}$.

A point \mathfrak{b} is a <u>source</u> (<u>exact source</u>) of a T-system (X,S) if for every x in X there exists (unique) f in S with $f(\mathfrak{b}) = X$. For an algebraic monoid $M = (X,e,\cdot)$ designate by (X,L(M)) and (X,R(M)) its T-systems of all the left and all the right translations, respectively. Call a T-monoid (X,F) a <u>regular T-monoid</u> if there exists an algebraic monoid $M = (X,e,\cdot)$ such that F = L(M). A transformation f contained in some regular T-monoid will be called a (<u>potential</u>) <u>translation</u>.

Statement 1. The following three assertions about a T-system (X, S) are equivalent:

- (A) (X, S) is a regular T-monoid,
- (B) (X, S) is a T-monoid with an exact source,
- (C) (X, S) and (X, C(S)) have a common source.

If these assertions hold, then for each exact source ε of the regular T-monoid (X, \mathcal{S}) there exists a unique algebraic monoid $M = (X, \varepsilon, \cdot)$ with $L(M) = \mathcal{S}$, whose multiplication is defined by

$$(9) \qquad \qquad x \cdot y = f_{x}(y),$$

where f_X is the unique member of S with $f_X(e) = x$. Let a transformation $f: X \to X$ be given. A subset A of X is stable with regard to f if $f(A) \subset A$. A transformation $g: A \to A$ is induced by f on its stable subset f if f(A) = f(A) = f(A) for every f in f. The kernel f of f is the union of all the subsets f of f such that f(A) = f(A) =

For a given x in X, the intersection of all stable subsets of $f: X \to X$ containing x is the path $P_f(x)$ of x formed by all iterates of x by f: (10) $P_f(x) = \{f^m(x) \mid m \geq 0\}.$

Two elements x, y, of X are E_{+} -equivalent if their paths meet, i.e. if $f^{m}(x) = f^{n}(x)$ for some non-negative integers m, m. The relation E_{+} on X thus defined is an equivalence relation by which X is decomposed into components of f. By $E_{+}(x)$ is denoted the component containing x. A transformation f is

<u>connected</u> if all elements of X are mutually E_f -equivalent, otherwise it is <u>disconnected</u>. Call $f: X \rightarrow X$ a <u>quasi-connected transformation</u> if it either is connected or has exactly two components one of which consists of a single point.

Statement 2. Any quasi-connected potential translation with bijective kernel and no one with an increasing kernel is a translation of a commutative monoid.

An element x in X is called a cylic <u>element</u> of $f: X \longrightarrow X$ if $x \in P_f(f(x))$. The <u>set</u> Z_f of all cyclic elements of f may be empty in the case X is infinite. If f has no cyclic elements then an equality $f^m(x) = f^m(x)$ holds if and only if m = m.

Statement 3. A connected non-surjective transformation $f: X \longrightarrow X$ with an increasing kernel is a potential translation if and only if

- (i) $Z_{\mathfrak{s}} = \emptyset$,
- (ii) there exist e in X and $h: \mathcal{Q}_{e} \longrightarrow \mathcal{Q}_{e}$ such that $f^{m}(X) \subset \mathcal{Q}_{e}$ whenever $f^{m}(e) \in \mathcal{Q}_{e}$,
- (11) fh(x) = x for all x in Q_{+} ,
- (12) $\mathcal{A}_{\mathbf{q}}(Q_{\mathbf{q}}) \cap P_{\mathbf{q}}(\mathbf{e}) = \emptyset$.

Call $f: X \longrightarrow X$ an increasing transformation if it is surjective but not injective. It is "increasing" in the sense that for some proper subset Y of X it is f(Y) = X.

Statement 4. A connected increasing transformation $f: X \longrightarrow X$ is a potential translation if and only if

 $Z_{\phi} = \emptyset$ and there exists an element e in X and an injection ϕ in C(f) such that

(13) f(e) = g(e) and $g(t) \neq e$ for any t in X with f(t) = e.

Moreover, for any fixed ϵ and q satisfying (13) there exists a regular T-monoid (X, F) such that $f \in F$ and $q \in C(F)$.

For proofs of Statements 1 - 4 see [1],[2],[3].

Statement 5. Any determining left translation $f: X \longrightarrow X$ of some (1,1)-monoid $M = (X, e, \cdot)$ is quasi-connected. If it is disconnected, then $X - E_{e}(e) = \{z\}$ and $M = K^{o}$ (a monoid K with zero adjoined), where $K = (E_{e}(e), e, \cdot)$ is a (1,1)-submonoid of M with the same determining elements (left or right) as M and z is the zero adjoined.

Proof: Assume f disconnected and define a monoid M' = (X, e, #) by

(14)
$$x * u = \begin{cases} x \cdot y & \text{for } x \in E_{\epsilon}(e), \\ x & \text{for } x \in X - E_{\epsilon}(e). \end{cases}$$

The left translation \pounds of M corresponds to the element $\pounds(e)$ contained in $E_{\xi}(e)$, hence \pounds is, by (14), also a left translation of M', and, since \pounds is a determining left translation of M, it is M = M'. By (14), $K = (E_{\xi}, e, \cdot)$ is a submonoid of M and all elements in $X - E_{\xi}(e)$ are left zeros of M.

Now, M has also a determining right translation φ which is disconnected, since $E_{\varphi}(\varphi)$ and $X - E_{\varphi}(\varphi)$ are disjoint stable subsets of every right

translation of M. So q is a disconnected determining left translation of a (1,1)-monoid M^{orb} opposite to M. By the same argument as applied above to f, we conclude that M^{orb} must have a left zero, i.e. M has a right zero. It follows that $X - E_q(e)$ contains exactly one point, the bothsided outer zero x of M. Clearly, elements determining M are the same as those determining $X = M - \{x\}$.

Statement 5 enables us to regard only connected determining translations of (1,1)-monoids since all disconnected ones can be obtained from them by a single fixed point extension.

Statement 6. A connected determining left translation $f: X \to X$ of a non-commutative (1,1)-monoid M must be surjective.

Proof: Assume £ not to be surjective. By Statement 2, £ must have an increasing kernel, hence Statement 3 applies.

Starting with e and $n: Q_{e} \longrightarrow Q_{e}$ satisfying the condition of Statement 3, we shall give a construction of a regular T-monoid $(X, F_{b_{e}})$ containing f:

For every x in X define a non-negative integer

(15)
$$u(x) = \min \{ k \mid f^{k}(x) \in Q_{q} \}.$$

Designate by V_{ϵ} the set of all x in X such that $f^{\mu(x)}(x) \in P_{\epsilon}(\epsilon)$, i.e. $f^{\mu(x)}(x) = f^{\mu(\epsilon)}(\epsilon)$ for some $m \ge 0$. Since $Z_{\epsilon} = \emptyset$ by Statement 3, such m is unique and we can define for every x in V_{ϵ} a non-

negative integer d(x) by

(16)
$$d(x) = m - u(x) \text{ if } f^m(e) = f^{u(x)}(x).$$

Since $Z_{\mathbf{f}} = \emptyset$, we can decompose X into classes $T_{n,Q}$ so that

 $x \in T_{n,Q}$ if and only if n,q are the least non-negative integers such that

(17)
$$f^{u(e)+n}(e) = f^{2}(x)$$
,

i.e. if for some $n', q', n' \leq n$, $q' \leq q$, it holds $f^{u(e)+n'}(e) = f^{q'}(x)$, then n' = n and q' = q.

Now, for every x in χ define a transformation $\mathbf{f}_{\mathbf{x}}$:

For x e V put

(18)
$$f_{x}(e) = x,$$

$$f_{x}(t) = f^{d(x)}(t) \quad \text{for } t \neq e;$$
for $x \in T_{n,q} - V_{q}$

(19)
$$f_{\chi}(e) = \chi ,$$

$$f_{\chi}(t) = h^{2} f^{u(e)+n}(t) \text{ for } t \neq e .$$

The T-system (X, F_n) , $F_n = \{f_x \mid x \in X\}$, has e for its source and its centralizer is formed by a system of transformations $C(F_n) = \{q_y \mid y \in X\}$, defined as follows:

Put $q_{\alpha} = 1_{\chi}$ - the identity transformation, and for $q_{\alpha} + e$ put

(20)
$$q_{ij}(t) = \begin{cases} f^{d(t)}(ij) & \text{for } t \in V_f, \\ \\ h^n f^{u(e)+m}(ij) & \text{for } t \in T_{m,n} - V_g. \end{cases}$$

After checking mutual commutativity of $\mathbf{f}_{\mathbf{X}}$ and $\mathbf{g}_{\mathbf{X}}$ for arbitrary \mathbf{x} , \mathbf{q} in \mathbf{X} , it is seen immediately that \mathbf{e} is a common source of both $(\mathbf{X}, \mathbf{F}_{\mathbf{x}})$ and $(\mathbf{X}, \mathbf{C}(\mathbf{F}_{\mathbf{x}}))$, hence by the "regularity condition" (C) of Statement 1 $(\mathbf{X}, \mathbf{F}_{\mathbf{x}})$ is a regular \mathbf{T} -monoid, and $\mathbf{f} = \mathbf{f}_{\mathbf{f}(\mathbf{x})}$.

Let $\mathcal{H}': \mathbb{Q}_{p} \longrightarrow \mathbb{Q}_{p}$ be another transformation satisfying, together with the same e as above, the conditions of Statement 3 and let us construct, by the construction just described, the corresponding regular T-monoid $(X, F_{h},)$, $F_{h}, = \{f'_{x} \mid x \in X\}$. If $h' \neq h$, then also $F_{h}, \neq F_{h}$: Assume $h'(t) \neq h(t)$ in some point t of \mathbb{Q}_{p} . Choose some x in $T_{0,1} - V_{p}$, e.g. $x = h f^{\omega(e)}(e)$, and h in \mathbb{Q}_{p} such that $f^{\omega(e)}(h) = t$. Then by (18) we have

$$f_{N}(b) = hf^{M(e)}(b) = h(t),$$

whereas

$$f'_{x}(s) = h'f^{u(a)}(s) = mh'(t)$$
,

that is, $f_x + f'_x$ and hence $F_n + F_{h'}$.

Since f is, by assumption, a determining translation, the two regular T-monoids F_A , and F_B cannot be distinct. This means that the transformation $h: Q_{f} \rightarrow Q_{f}$ satisfying the conditions of Statement 3 must be unique. On the other hand, every choice function on the disjoint family of sets

(21) $(f^{-1}(x) \cap Q_f) - P_f(e), x \in Q_f$

meets these conditions. It follows that each member of the family (21) must contain exactly one point, which amounts to saying that $T_{m,m}\cap Q_{\mathfrak{p}}$ consists of a single point $x_{m,m}$ for every pair (m,m) of nonnegative integers. The assignment of (m,m) to $x_{m,m}$ establishes an isomorphism between the transformation induced by f on its kernel $Q_{\mathfrak{p}}$ and the transformation $f_{\mathfrak{q}}$ defined by (4). Note that (0,0) is assigned to $f^{\omega(\mathfrak{p})}(\mathfrak{p})$ - the first of iterates of \mathfrak{p} by f which is contained in the kernel $Q_{\mathfrak{p}}$ of f.

We have proved, thus far, that the only regular T-monoid containing f is (X, F_{g_k}) described by (18), (19) with the only possible $h: Q_f \longrightarrow Q_f$ given by

(22)
$$h(x_{m,n}) = x_{m,n+1}$$
 for every $m, n \ge 0$.

It remains to show that $(X,C(F_n))$ does not contain any determining translation. Using the description (20) of $C(F_n)$, we can easily see that for every p in V_f or in $T_{n,q} - V_f$ with $\mu(e) + p - q \neq 1$ the transformations q_n are not quasi-connected: For p in V_f as well as for any p in $T_{n,q} - V_f$ with $\mu(e) + p - q \geq 0$ the sets V_f and $X - V_f$ are disjoint infinite stable sets of q_n ; for p in $T_{n,q} - V_f$ with p and p with p and p are p and p are p and p are p and p and p and p and p and p are p and p and p and p and p are p and p and p are p and p and p and p are p and p and p and p are p and p and p are p and p and p are p and p ar

Our last step it will be to show that also φ_{μ} for an arbitrary μ in $T_{\mu,\mu(a)+\mu+1}$, $\mu \geq 0$, fail to be determining translations of $\mathcal{C}(F_{\mu})$. Using (20), we have

(23) $Q_{ij}(x_{n+i+1,j}) = M_{\pm}^{ij}(x_{n+i+1}^{(ij)} + M_{\pm}^{ij}(x_{n+i,0}) = X_{n+i,j}^{(ij)}$ for all $i \ge 0$ and arbitrary $j \ge 1$. This means that all the points $x_{n+i,j}$ for $i \ge 0$ and $j \ge 1$ are contained in the kernel Q_{ij} of Q_{ij} . Since we have

 $g_y(x_{p,u(e)+p+1}) = x_{p,u(e)+p+2} = g_y(x_{p+1},u(e)+p+2)$, the point $x_{p,u(e)+p+2} = g_y^2(e)$ cannot be the

first iterate of e by q_{ij} contained in the kernel of q_{ij} . If $q = x_{n,u(e)+n+1}$ we are in precisely the same situation because of

$$g_{ij}(x_{p,u(e)+p_i}) = x_{p,u(e)+p_i+1} = g_{ij}(x_{p_i+1,u(e)+p_i+1}).$$

In the case $y + x_{n,u(e)+n+1}$ y is not in Q_t , therefore by (20) it is $Q_{n,u}(t) = y$ only if $t \in V_t$ and d(t) = u. Since there is no x_t with $Q_{n,u}(x_t) = u$ for such a t, it follows that neither $y_t = Q_{n,u}(e)$ nor $e = Q_{n,u}(e)$ is in the kernel of $Q_{n,u}$.

So in $(X, C(F_n))$ there is no determining translation - a contradiction due to the assumption that f is not surjective.

Statement 7.A connected and surjective determining left translation of a non-commutative (1,1)-monoid M must be isomorphic to the transformation f_a given by (4).

Proof: By Statement 2, f must be increasing. By Statement 4, we can choose an element e in X and an injection g in C(f) satisfying (13). Since, by Statement 4, f has no cyclic points, every x in X determines uniquely the least non-negative integers m(x), m(x) such that

(24)
$$f^{m(x)}(e) = f^{n(x)}(x) .$$

This defines a decomposition of X into classes $T_{m,n}$ such that $x \in T_{m,n}$ if and only if m(x) = m, n(x) = m. Next we shall prove that

$$(25) \qquad \qquad g(T_{m,m}) \subset T_{m+1,m}$$

for all $m, n \ge 0$.

From (13) it follows that for every m, $m \ge 0$, it is $q \cdot f^m(e) = f^m \cdot q \cdot (e) = f^{m+1}(e) = f \cdot f^m(e)$, thus $q \cdot (T_{m,0}) = T_{m+1,0}$, since clearly $T_{m,0} = \{f^m(e)\}$. From $fq \cdot (t) = q \cdot f(t)$ we get

(26)
$$g(t) \in f^{-1}(gf(t))$$
 for $t \in X$.

If $t \in T_{0,1} = f^{-1}(e)$, then gf(t) = g(e) = f(e), and, by (26), $g(t) \in f^{-1}(f(e)) = T_{1,1} \cup \{e\}$. But by (13) it is $g(t) \neq e$, thus $g(t) \in T_{1,1}$ and hence $g(T_{0,1}) \subset T_{1,1}$.

If $t \in T_{m,1}$ for $m \ge 1$, then it is $gf(t) = gf^m(e) = f^{m+1}(e)$, and, by (26), $g(t) \in f^{-1}(f^{m+1}(e)) = T_{m+1,1} \cup \{f^m(e)\}$. Since g is injective, it follows from $gf^{m-1}(e) = f^m(e)$ and from $t \ne f^{m-1}(e)$ that $g(t) \ne f^m(e)$. Thus

 $q_i(t) \in T_{m+1,1}$, and we conclude that $q_i(T_{m,1}) \subset T_{m+1,1}$.

We have yet proved the inclusion (25) for m=0, 4 and all $m\geq 0$. Assume that (25) holds for some $m\geq 1$ and for all $m\geq 0$. Since for any t in $T_{m,m+1}$ it is $f(t)\in T_{m,m}$, we have $gf(t)\in T_{m+1,m}$, and, by (26), $g(t)\in f^{-1}(T_{m+1,m})=T_{m+1,m+1}$, which completes the proof of (25).

From (25) it follows that no $T_{m,n}$ is void, since $T_{0,m} \neq \emptyset$ for all $m \geq 0$. On the other hand, each class $T_{m,m}$ contains at most one point: If $|T_{m,m}| \geq 1$ for some m, m, choose x in $T_{m,m}$ and y in $T_{m+1,m}$ so that $y \neq q(x)$ and define q' by

(27)
$$q^{2}(t) = \begin{cases} f^{k}(y) \text{ for } t = f^{k}(x), k = 0, 1, ..., m-1, \\ q(t) \text{ otherwise.} \end{cases}$$

We have g'(x) + g(x) while g' is easily shown to satisfy the conditions (13). By Statement 4, there exist regular T-monoids (X,F) and (X,F'), both containing f, with g in C(F) and g' in C(F'). Since g' + g, it is C(F') + C(F) and thus F' + F, in contradiction with f being a determining translation of M.

Let us identify the set X with the set $\mathbb{N} \times \mathbb{N}$ of all ordered pairs of non-negative integers so that (m,m) denotes the single point contained in the class $T_{m,m}$. The transformation f then coincides with f_m described by (4).

Statement 8. The element (1,0) is a left determining element of the bicyclic semigroup B as defined by (3).

Proof: The only possible choice of e and of an injection q in $C(f_a)$ satisfying (13) for f_e given by (4) is e = (0, 0) and

- (28) g(m,m) = (m+1,m) for all $m,m \ge 0$. By Statement 4, there exists a regular T-monoid $(N \times N, F)$ with f in F and g in C(F). In F there must be a transformation h such that h(0,0) = (0,1). Since fh(0,0) = (0,0), it is fh(m,m) = (m,m) for all m,m and therefore
- (29) h(0,m) = h(0,m+1) for all $m \ge 0$. Using commutativity of g and h it follows from (28) and (29) that
- (30) h(m,m)=(m,m+1) for all $m,m \ge 0$. By Statement 1, the unique multiplication on $N \times N$ with the identity (0,0) for which Γ is the system of all the left translations is given by

(31)
$$(m, n)(\kappa, b) = f_{(m,n)}(\kappa, b)$$
,

where $f_{(m,n)}$ is the only member of F with $f_{(m,n)}(0,0) = f_{(m,n)}(0,0)$. But clearly $f_{(m,n)} = M^n f^m$ and (31) is easily checked to give the same multiplication as (3), i.e. the multiplication in B.

References

[1] Z. HEDRLÍN, P. GORALČÍK: O sdvigach polugrupp I,

Periodičeskije i kvaziperiodičeskije preobrazovanija, Matem.časop.3(1968) 161-176.

- [2] P. GORALČÍK, Z. HEDRLÍN: O sdvigach polugrupp II,
 Surjektivnyje preobrazovanija, Matem.
 časop.4(1968),263-272.
- [3] P. GORALČÍK: O sdvigach polugrupp III, Preobrazovavanija s uveličitělnoj i preobrazovanija s něpravilnoj surjektivnoj častju, Matem.časop.4(1968),273-282.

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, Praha 8 Československo

(Oblatum 7.4.1971)