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ERROR - ESTIMATES FOR THE RITZ S METHOD OF FINDING
EIGENVALUES AND EIGENFUNCTIONS

K. NAJZAR, Praha

In (1) - [3] , we studied the method of least aqua-
res for approximating the eigenvalues and the eigenfunc-
tions of a DS-operator. In this paper, we present a pri-
ori error-estimates for the Ritz’s method for eigenva-
lue problems. Upper and lower error bounds are found.

We assume throughout this paper that A is a DS-
operator whose domein QD (A) is dense in a separable
Hilbert space H , i.e., A is a symmetric operator in
H such that the set of ite eigenvalues is of the first
category on the real axis and the spectrum @& (A) is
the closure of this set.

Suppose A is bounded below and such that the ei-
genvalues {.7\.,&! of A satisfy the relations

(1) A4.< .9»2<... <.2.’-_<... o

Let H, be the closure of linear manifold generated by

the eigenfunctions of A associated with the eigenva-

- ——
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lue .?\.4 . The symbol P;« will be used to denote the
orthogonal projection «4# on Hi . We introduce the ope-
rator B= (A- @ I)i , where I denotes the iden-
tity operator in H and (% is a real number such
that @ < A . It is evident that o = VA; — ',
4=4,2,... ere the eigenvalues of B and H; ia
the closure of the linear manifold generated by the ei-
genfunctions of B associated with the eigenvalue ¢, .

Therefore B is DS-operator. We remark that
o
D(B)r=Sme H/Lgif 4.0: I'E; «w 1< 0% > DCA)

and Buw =4_§4C"'.;.P1',"" for each w«w € D (B) .

Let {Y }3'_4 be a B-complete system (cf.[61,[11) ard
let R, eand R, be subspaces of H determined by

functions {¥,;};% , and { :B‘!Q}f“' respectively. Deno-

1=4 )
te
(m)
A (Aw - i, )
&n = u:”k,,,n H®, . ’
el =4

-4 :
where H::') = :‘2_1 @ }{1.', H:"- H GH,:,:’ for m > 1

and H:’”-&O!, H:”-H .

Then the sequence (0.::"" :.4 is monotonically de-
creasing and converging to A.m - & (cf. Theorem 5 of
[11).

Let @ be a normalized eigenfunction correspon-
ding to & Let us construct the sequence of numbers

(- J .
{ gm}”" such that g = “;,,g‘;zw: Bl , By Lemma 3
R =

end Remarx 3 of [3]we have for m = m,
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(n)
(2 Q’,}»‘t“:écq'l%' ‘?4"2’

where C = (A - ). (1-lq - N7
(n)

9, is the orthogonal projection of 2
£ {BYIP

isq 80d m,

"”"gq, #0 ana TV o0.10 @
value of B , then

on

is a positive integer such that
is a simple eigen-

2 . _m) 2
(3) szl-(,%zcz llqg, gg,ll 5

2 -
¢, = @40(&:-({»&:)'(6&:+&i)4
and there exists {3

m Sm=q Such that the following con-
ditions are satisfied:

1) w,eR, , lu,l=1,

2) IIBM.M” = Qm
(4) 0
3 oo Ym = P o
4)

(up, )2 0 for m=41,2,..

.

The proof is similar to that of Theorem 1 in [3] and

C,‘* such that for m 2 m

Theorem 3 in [2]. Further there exist constants C3 and
o we have

@ N2 -1 £1Bu,-Bg 1 & (- Ig -y
(5)

1

!
19, - "1 & lu,- gllaC-Ng-"f1,

mn) .
where % is the orthogonal projection of g' on
R, (cf. Theorem 2 of [3]).
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1. In this section, we give upper and lower bounds

o 2 -
for @, -A, and for Wu, - o, , where lw i} =

= (Aw - 4, ) , respectively.

Since (@ is smaller than A the bilinear form

4 2
defined by (w,nr) = (Au-wu,v), u,v in DC(A),
is a scalar product. Denote by 724 the complete hull

of D(A) with the norm ha = VZu.,u.L . Let 4% 37

be a complete system in 184 and let .h:"" be an ap-
proximation to 2, obtained by applying the Ritz’a
method to the subspace R, = §£{¥, _{';4 of ¥ . It
follows from the definition of B , that Af'ms Q::’-P‘a.z
- 93» + & . If, in addition, .&4

lue of A, then {u, }:" has the following properties

V w,eR,, lu =1,

is a simple eigenva-

(6) 2) luply = 2™ o,

3 (u,, )2 0 .,

meA
Therefore Moy is an approximation to % obtained by
epplying the Ritz’s method to R, .

Since

w a2 a1 . 2
M Mg - ,“?inn%-bun-m.mu%-v;

and VBu,-Bgl=lu,-gql ,

the following theorem is a direct consequence of (2) - (7).
Theorem 1. Let A be a DS-operator which is bounded
below. Let .2.1 < A‘z < ... be an enumeration of its dis-
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tinct eigenvalues increasing order of values and let

@ be such a number that w < A, . Let {¥,3%
be a complete system in w1 . Denote by .ﬂf""" an ap-
proximation to A1 obtained by applying the Ritz ‘s
method to subspace R, = LAY 3 of #, . Then there
exists a positive number J which does not depend on
m such that for m = m,

m) . , 2
- . -l ’
.7L1 2 & D 9:01{' (:f":n,, I ; ;
gph=1

where H1 is the closure of linear manifold generated
by the eigenfunctions of A aasociated with the eigen-

value JL“ and

m, -u.cﬁ., max {iml(u,v) =0, ~»eR, % .

If, in addition, .2.1 is a aimple eigenvalue of A

then there exist constants I, 2,*0,0D,, D, which
do not depend on m such that

D+ (Ef)2 &A™ -3 <] . (E™)

) (m)
E:n € luy,- g |, “ D« B

)
‘“‘“’- 911' r< D“_‘ E,,

’

7

where 4 is the Ritz s approximation to a normalized
eigenfunction @ with the propertiea (6) and E;"" is
the error of the best approximation to P by functions
of R, in the norm M I ,i.e. E:“,-v%lqg‘ kg
Remark 1. It follows from Lemma 3, Theorems 1 and 2
of [3] and from (7) that Theorem ' is also valid when we
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replace D, by ])4.’* for {4 = 4,2,3,4 , where

1
DF = (4=ap )%, apom (A -@) T E™,

A
D:-("'PZ' 1

D= (D}/DE :

i
DF=L2DX/ (2, -~ 2] .
Consequently n% :D,“"' =1 .

2. In this section, we derive upper and lower bounds
for the errors of Ritz’s approximation to .9(.’-_ and @ ,

4 > 1 . For simplicity we assume that

8 A <A, <..< X< .9.3._‘_4 and A, i=1,.,4 are

simple eigenvalues of A ,
Let P be a normalized eigenfunction of A corres-
ponding to the eigenvalue A. for 4 = 1,..., 4 -

We now present a number of results which is useful
to have on record for later use. First of all we consider
the problem of approximating the eigenfunctions of B .

Lemma 1. With assumption (8), let {433, , be a se-
quence of normalized functions belonging to D(B) such
that Lim IBo, il = ey and m (a, ,@, )= 0 for
A= 4,..( -1), Then there exists a convergent subse-
quence { v“h}:’“'
tion of B belonging to “g

such that its limit is an eigenfunc-

Proof: By direct computation it follows that
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B, I? - @} = (uf,, - k) 5H 1B,y I? +
ég 2
1§1 (y, (u. Yo IR g 17

Since ﬁ% Ianrﬂ,Il= Mml(nr , P =0 for 4 =
=1,...,(4-1) ana L 1By = e we have

o 1 ;)1 = 1  and the remainder of this lem-
ma may be proved in the same way as Lemma 2 in Lag.

The following theorem is a generalization of Theo-
rem 3 from [2) and gives information on the construction

of the approximation to 93.

Theorem 2. With the assumptions of Theorem 1 and

(8) construct the sequences 4 ,;:’ o SR A

with the following properties

Vg = 1Bufl = min
ﬂ'l«

(Ab w )_ 0 h=‘4,,,,,(1',-4)
Nawl=1

for © =2,.0..,4 3 m = £ ;

(Z)) C4)l . B“'
em = 1Bu, I-u‘ Rom s lastliz4 I ’
2) llu.“’ll 1, i=4,...,4 ; m =41
N (WP uh V20,404 m 2 i
Then
a) The sequence {wf,i"}:” converges to a norma-

lized eigenfunction @y of B associated with the ei-
genvalue (.4,“=V.2.1.'-¢1.¢. for 4 =1,..., 4

’

B) (Bufy, Bull) = 0 for i sk o i, dom by, G
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Proof: In case 4 = 1  the proof follows from Theo-
rem 3 and Lemma 3 of [2]. We now proceed inductively. L:t
the theorem be true for 4 = 41,..., (4 -4),It then fol-
lows, since Lim, Nl — g, N = 0 for 4 =4,...,(G-1),
- that fom «,“" = 0 for 4= 4,..,(4~-1) , where
= (uP, 9.) = (uf, @ - )
Now, if 3‘," > ¢ > 0 , there exists a positive integer

)
m, such that for m 2 m, 1Byl % % + e , whe-

" @_ %5 w
My = ‘%, Xn P

& A4
ﬂu.,fé”- h%q “"‘w i !

t,s

Since 4 L {¥;$3:" | we have u“,sz’?)}

Therefore

1
" ) o 3),%
(9) Um 9% Z“%CG,») =y .

m =» e Lm

On the other hand, let us construct normalized functions
Yo Rpn H{Y, m 24 so that IBay, 1=P)ri .
Let B = (v, .a.‘”)-(v wl -?1 .

Since &m AP = 0 for i = 4,...,(3-1), there ex-

ists a poainve integer m, such that for j."> e >0

IBWI‘(QG,)1+5 for m = m,

?

where w = Z (3“’ o

Since ar L & ¢ “:i}ﬁr"’
& lBawrf and hence

it follows that gfﬁ =

- 492 -



(100 tim o = tm caf,{’ﬁ =y

Therefore, we see by (9) that ALm @ = &y -
Since  fim (wi?, @, ) = 0 for ia=A4,..,(F-1),
we know by Lemma 1 that the sequence {w"’ 3meq CoOD-
tains a convergent subsequence and that every its con-
vergent subsequence converges to a limit which is a nor-
malized eigenfunction of B associated with the eigen-
Yalue 5 ., It follows that the sequence {w“’ e
contains at moat two accumulation points. These points
are @; and (- @), where @ is a normalized eigen-
function of B associated with the eigenvalue (u.?- . The
remainder of the proof is similar to that in the proof
of Theorem 3 in [2].

The assumption 3) implies that {w",}:‘1

one accumulation point. It then follows, by virtue of

has

Lemma 1, that the sequence -(u,fn"!:,,, ia convergent

and so the first part of this theorem is proved.
To prove b), let {X, }:::’a be an orthonormal
basis of the space X =4{m/uw e R, ,(«, u,‘:)) = 0

for Led,..,(i-D3.Let uld = "E"«, 2, .

Using the definition of u.“" , we have
4)
Ty (X, , B, - (g% 1m0
for e =1,..,(m+1-~ 4.)
and hence
(BulP BLy) = (g8 oy, Mem 4, ,(mtd=-4).

By direct calculation we see that

(Bul®, Bor) m (922 (& ) for any o ¢ X
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and this completes the proof of b). Theorem 2 is comple-
tely proved.

The following theorem states how accurately the
eigenfunction 9"_ and the eigenvalue “s of 2 can
be approximated by functions of & < ?".’3;";4 for m =

Z 4 .

Theorem 3. Under the same hypotheses as in Theo-
rem 2 there exist a positive integer m, and the con-
stants C ,C, %+ 0, C, , Cl' which are independent of
m such that for m Z m,

(m) 2
(8) Cyr 195~y 17 & @B~ 4 G, max Vg, =T, 17,

j n)
(b) &.ng,’._mb,,n 4 1Bud-Bg; £ Cpr mar g ="g; 1,

()  lu@-ql%c, tg, -%p 1,

¢ Mmak
isdyeen,gd

where ""'gy‘.' is the orthogonal projection of @; on

R,=&LABY 1T, , for 4 =4,..., 4 .
Proof: We proceed by induction. For 4 = 1  the

statement follows from Theorems 1 and 2 of (3]. We now

define T as the reatriction of B to R, = L{Y i .

Since 0 & 6 (B) , it follows that T and T-1 are

continuous linear operators on R, and R, = L{BY " ,

respectively. In a similar way, by methods analogous to
those employed in the proof of Lemma 1 from [3], we can

obtain

n%én‘- «3 -l 'r""‘&»,. i <1g, -“’9,. i
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for each positive integer m .

Let
-4 (m) g £
u = T ??"4'4.%4 e, u,
where
= <)
Cy = — (T""’"q:j,w;, ).

Then (4, u,,ff’) =0 fori=4..,(4-1) and from
Theorem 2 it follows that

g~1
N l? = I T, 12

-'L.4

¢ .

It is easy to see that

¢ 1 . g
c‘.‘=-('r'4('"<}?-,uf,:)— @) - @ (éft?%" @;), 4=1,..,(F-1).

Since

1 1
IT=" " 1 £ T 1“9 1 « =

and | (", @01 & g - P Il tor imA,..,(G-1),
we conclude by induction that

(11) le, 1 « C - £; for i=A1..,(4-1),

n)
where ,e,-’ -_-42% "?,’,' -2 I and (¢ is a constant

which does not depend on m .

But 4m "3' = 0 and hence there exists for (0 <

m=>eo
< g < (.“';.4 a positive integer m, such that fulf =

ZFL;_-5>0.

1)
By the definition of gf:" , We have

(12) R,c,?,.,)'(,“—,' = C,n'(lbwllz- L“; e e l?) ’

where

1
™" Wall-(IBal+@y -Tal)
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By direct calculation we see that
’ 1
(13) o Xm C, = 7 4
We have
2 2 2 _ ™ g2 2. -1m) 42
1Bat?- @l Il = (19, 1% -} - I T “G 17) +

(1) o @
£ 252 L+ @ 1+ 20 [F o (G, Bul)),

by Theorem 2.
Further, by induction

(o, Buf)l = 1%, Bu - Bg)l +
(15)

(m)
t1Cg, - g, , By )l &£ D-o;
for 4 = 4000y (3 -1) , Where D is a constant which
does not depend on m , On the basis of (11) - (15)

@ _ 2
L " & Q;‘;‘ for m = m, .

For proving (b) we remark that

3) 2 3)42 2 (73]
(16) unu,"-pg:. P (@2l +2uf - (-,

where . = (w ﬂ_ ) 94 ) ., By Theorem 2 it follows
that 41 2 or.?’ = 0, whence 1 - x¢’£,4-(¢fj’)‘
(- -}

Writing ,u.‘*’- i.gq o:.?’- 2, oc& , ?1_ we have

)2 _ 2 2

‘J ) (“’p ZE‘;M 3';%(“‘& ) '((“';'4-4'(“'4)’

whence 4

1= Cx;”) (u"_(“’ (em Y) wg) +
amn . "

+ t“'u"ﬂ- Z (“"3’)2

(“'344
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oy )
We now show that an estimate for :,24 (oc:.")" leads

to an estimate for (g‘:;’)" - (u.:_ . Let us consider the

matrix A = {“,‘0:,3,u,;-4,...,(;-4> . By the induction

i “w s _
we have“% g = d.;.,i ., From this it follows that the

re exists for 0<g < 1 a positive integer m, such

that for m 2 m

1

(18) 1A™Ml< 4+ e and AWl 2U=-¢€) lal,
where |. | denotes the Euclidean norm.

Define for m = m,
(19) = A <P

& G , g1 41
where oc "{“b 31..-4 and m-'f/ﬂ.’}i.,’ .
1

2 o
We introduce 17 = T+ 12?2 ? 1, '-”’i"ﬂ,'. for 1+ =
= 4,..,(4~-1) . Then

# #21 ln®
2 2
(20) ¢§1 rn, =1 and o yoaTS
It follows from (18) - (20) that
' s @
(21) ‘:5@% = C'ié (e, ) for m 2 m,,
where (1-¢)?2
¢ = — > 0 .
1+1+¢)
. > @) .
Letting o = PO PR we find o ll= 1

and (a, gg‘.) =0 for 4i= 1,...,(3~- 1) .Hence, by the de-
finition of Q% ,

2 (€2 2
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and using Theorem 2 and (21) we find for m = m,

42 2 32 _ 2
(qm:)—(wa._Z(gm) 1 Barll® =
(22) izt 3942 &) y2 2 3l @y2
=1,'§1£(q,:) -(g;) J'*ﬂ'; = D‘s_§4(°‘=—; )z,
where ) is a constant which daes not depend on 7,2 .
It follows from (16),(17) and (22) that there exists a

constant C > 0 such that for m = m 4
(23)  IBw® - Bg 1* £ C-[(gE)* - @}l .

This, together with (a), leads to the first assertion of
(b).

It is easy to see that

. 1 ,
3 2_ 2,00 .5 @& 2 2 4 (m) 2
(24) l\BA.L“-b?‘_._ll "'6“’5 ”(“;’ Bu“-gv;-ll .>.(w?. II% %.fl
and this completes the second assertion of (b).
since 1Bu%-3g 1 2 « - luP- g, | ,  tne

right side of (c) follows at once from (b). The left si-
de of (a) follows from (23) and (24) and this completes
the induction and the proof of Theorem 3.

As a corollary to Theorems 2 and 3, we obtain the
main result of this paper.

Theorem 4. Let A  be a DS-operator which is boun-
ded below. Let A < .7\2 < ... be an enumeration of
its distinct eigenvalues increasing order of values and
let P be such a number that ® < .9(4 , Suppose .7{1._ R
A=4,..,4  are simple. Denote by («, a ), the
scalar product (Au - wa, ») . Let '881 be the
complete hull of QC(A) with the norm |l IL' .
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Let (1!,‘ 3;:,, be a complete system in 781 . Construct

the sequences (w312 i =4,.., 7 with the

following properties

U 17 ) )
1) mim (Au, )= (Auy &)= 2
“‘&“ﬁwh gl m 2 m m )
R l=1
'""'Q @) (D @) . 5
“® e {?,J;_".SA“"“'): (Au'”:’u"" )= z'o: :4"'2:""3';
(o, itf®) = 0, k= y0nny (4 =4)
Rach's 1 vi3
2) M i 1 = 1
(1) <)
3) (u,m‘_",“m”)g o .

Then

(1), @

a) The sequence {u, 377

canverges to a nor-
malized eigenfunction g, of A associated with the

eigenvalue A. for 4 =4,..., 3 and

b) Denote by Bi”"’ the error of the best approxi-
mation to ¢@; by functions of £4¥, 3. in the
norm || » Il‘1 , i.e.,

> ’
EM =  inf le, - ol .
% re iYW 1™ ®: 1

< ‘axA1
There exist a positive integer m, eand constanta
¢, ¢, * 0, Cy o Cl,_ which do not depend on m such
that for m =2 m,

. m)\2 %) . my,2
Cﬂ_ (E?.)l_-.a ﬂ.?-éc [Lomac E.1

a 1 izd.,g * d
(m) (2] m)
A - @l £ C.. ;
E? "Ma'” % "1 3 FiA ""” E’ 9

) _ 3 n)
lu - g1 & Cp moe B
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)
Remark 2. The function 4@5?’ and the number -lif
in Theorem 4 are the Rayleigh-Ritz approximations to gy

and &é respectively.

Proof: Let B = (A - CwI)i . The proof of a) fol-

lows at once from Theorem 2. Since

(n) m
E™ -”ﬁf{y4331ﬂb(g’i—v)ls VA, - Ilg, - Il

and A,ff"- )lé - (9_?;))2 - ca,; the assertion of b) fol-

lows from Theorem 3.
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