#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1971
PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012 |log42

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

Commentationes Mathematicae Universitatis Carolinae

12,3 (1971)

ELLIPTIC POINTS IN ONE-DIMENSIONAL HARMONIC SPACES

Josef KRAL, Jaroslav LUKES and Ivan NETUKA, Praha

Introduction.

Let X be a locally compact space. By a harmonic
sheaf on X we mean a map ¥ assigning to each open
set Wc X a vector space Wu (over the real num-
ber field) of finite real-valued continuous functions
(called harmonic functions) on U  in such a way that

( X, %) represents a harmonic space satisfying the
axiomsof N. Boboc, C. Constantinescu and A. Cornea, [2].
Let us recall that an open set L ¢ X is termed re-
gular provided it is relatively compact, its boundary

dU  is non-void and each continuous function £ on
ou possesses a unique continuous extension to 1L
( = the closure of WL ) whose reatriction H: to U
is harmonic and, in addition, non-negative on U when-
ever £ 2 0 on 3U . Given a regular set U , then
with each X € U there is associated a Radon measure
" , which ie
defined by the map a)g s £ —> H: (x). Its sup-
port will be denoted by ant cog «  We shall say

that J  is elliptic at x € X (or that x is an

wt (called harmonic measure) on 8 U

AMS Primary 31D05 Ref.2.
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elliptic point of the harmonic space ( X, 3) ) pro-
vided X possesses a fundamental system of regular
neighborhoods U such that »pt a)‘; = U .
The set of all elliptié points will be denoted by

E (X, ¥) . In general, little can be said about

E (X, #) and, actually, E (X,%¥) may be em-
pty as shown by the standard example where X = X'"'M
is the Euclidean (m + 1) -space and harmonic func-
tions are solutions of the heat equation (cf. H. Bauer
[1]). The present note centers around the investigation
of E (X , ¥ ) for the special case when X is a
l-manifold. The following results will be proved. _

Theorem 1. If 3 is a harmonic sheaf on a l-mani-
fold X , then E (X, ¥#) is an open set everywhere
dense in X and each component of E (X, ¥ ) has
a countable base.

Suppose now that X is a l-manifold on which the-
re has been fixed an orientation. This orientation indu-
ces a linear order on each arc C ( = a subspace which
is homeomorphic with the real line R? )in X ana
for each x € C we may thus speak ‘of the left-hand
component and the right-hand component of C \ 4{x? de-
noting them by C~ (x) and C* (x) , respectively.

We shall denote by F ¥ (X, ) the set of all x € X

for which there is anarc C , x € C ¢ X such

H

that ant w‘: c CY(x) whenever U is a
regular set with x ¢ W ¢ U c C . Replacing

C*(x) by C™(x) we define analogously the set
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F (X, %) .

Theorem 2. F*(X,%2) , F (X ,3%) are
separated subsets of X and F* (X, ¥ ) vu
UF (X, %)= XNE(X, ).

Theorem 3. If X 1is an oriented l-manifold and
rT y F~ are arbitrary separated subsets of X such
that E = X \ (F*u F~) is an everywhere dense open
set whose components have a countable base each, then
there is always a harmonic sheaf on X such that
F*SF*(X,%), F™ = F~(X,3%) and, conse-
quently, £ = E (X ,3) .

Several related results will also be included and

the structure of all absorbent sets will be described.

§ 1.

This paragraph includes several auxiliary results
dealing with the case when X is an open interval in
R" ., If o £ & are elements of the extended real line,
then we use the symbols
a,¥)=ix;xeRagcx< &3, (a,4r>=
={x;xeR!', a<x= 0%,
la, > =<Ka,b)u (a, &>, (a,f)=<a,b)n(a,b>
to denote the intervals with end-points o, £ , If G
is a compact set, then % (@) will denote the space
of all finite real-valued continuous functions on & .
Throughout this plragréph we assume that for each open

set W c X there is given a vector space aeu of

- 455 -



real-valued continuous functions (called harmonic func-

tions) on U such that the following axioms are sa-

tisfied:

(I) Sheaf axiom: If u, c uz are open sets, then
h e aveuz ==> Rest, Mh e G'Eu_

4

u,

(where, as usual, Ru:tu_ 2 denotes the restric-
1
tion of A to u.1 Yo If: {LLA!_“A is a system

of open sets and fv is a function on U = a.LeJJ\. u, ,
then A is harmonic on U provided Rest,, h €
A

€ 3eu for each A & A .
a

(II) Basis axiom: Open sets that are regular (in the
sense described in the introduction) form a base for
the topology of X .

(ITT) Minimum principle: If <a,& > c¢ X is a com-
pact interval and & € € (Ka, &) is harmo-
nic on (a,£), then /o = 0 on {a,& > provided
hla)=2 0 anda h (&) = 0 .

(IV) Harmonicity of constants: Constant functions are
harmonic on X . '

1.1. Remark. We shall denote by AIL and U the

boundary and the closure of U c X , respectively.

let UL be a regular set. According to (IV), the harmo-

1
%

a probability measure. Each component of Ul is also

nic measure @ corresponding to x e U is

regular and st c.:t: is contained in the boun-

dary of that component of W which contains x (com-
pare H. Bauer [1], the proofs of 1.3.4 and 1.5.1). Con-

- 456 -



sequently, U is an interval provided Ant a)ﬁ =
= OU for some X € U . In view of (II), regular
intervals form a base for the topology of X ., In ac-
cordance with the introduction, we shall say that X €
€ X 1is an elliptic point if x posseasses a funde-
mental system of neighborhoods formed by regular inter-
vals I such that mpt wfx =481 . The set
of all elliptic points will be denoted by E .

1.2. Lemma. Let <{a, & >c X be a compact inter-
val, h e € (Ka,&>), A la)=s 0, A(¥) =1,

1= (a,lr),ﬁ»trhegel .Then there are a', &’ € <a,#&)
such that o € a’'< &' £ &, h(<a,a’>) = 401},

(< &y °>) = 1% and A is (strictly) in-
creasing on < @’, &’>, If, in addition, 1 is regu-
lar, then for any x € I

1)  »nt a)i-{a,,lri => a'< x < &',
(2) Hpt @) = fa) = @’ 2 x
(3)  mpt w = (6] = &< x .

Proof. By (III), %# 2 0 on <a,f > ., Assuming

h(x) > M (y) for a couple of points X < 4 in
{a,& > end defining M (t) = h(y) - M(t) for
te <a,y> ,we obtain an hoe €< a,y ?) with

Kwt(%wﬁ € 'ka”), h) 2o, hy)= 0,R(x)< 0.

This contradiction shows that 4 must be non-decrea-

singon <a,&). Put a'= supfix; x € <a, &),

M(x)= 0}, &' =infix; x € <a, &>, h(x)=1}.
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We are going to show that . is increasing on

<a’, &’).In the opposite case there are ¢, d €

€ (o), &#’) such thatc< d, K (Sc,dd)= fx}.
Clearly, 0 <« o« =< 4, Defining h_, (x) = 4 (x)
and M, (x)= o accordingas a & x < d and

¢ < x & A, respectively, we see that 4, is a
continuous on {a , &> and harmonic on (a,d) v

v (e, &) = (a,&). The relations h, (a)= x h(a),
h ()= b (L), h(e)=cx > x? = o h(c)
contradict (III).

Suppose now that I is regular and fix an X € 1.

The equalities
1 b
1 = a, (fal) + o, ({£3)
(X)) = hla)awl (fad) + m(lb) wy (183) =
= @i ({41)

yield the implications (1) - (3).
1.3. Corollary. Let I be a regular interval. If

there is a continuous increasing function /2 on 1
such ‘that W: n e 581 , ‘then wi =01
for every x € 1 .

Proof. Suppose that there is such a function on
T= <a,£ ). mltiplying it by a suitable positive
factor and subtracting a suitable constant one may cle-
arly achieve that h(a) =0, h(&)= 41 , =0
that 1.2 is applicable. Since @’ = a and &’ = &
now, the implications (1) - (3) show that Amnt wi =

= {a,®&} forany x e 1 .
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1.4. Corollary. Let 4 ,a, &;a’, &’ have the
meaning described in 1.2. Then (a’, &#’) c E .
Proof. If x € (a’, &4’) and J is an arbit-
rary regular interval with x € J ¢ J < (a’, &%),
then, by 1.3,
st @ = 83 .

1.5. Proposition. E ia open and dense in X .

Proof. Let X be an arbitrary peint in E and
fix a regular interval I = (a, £ ) with snt c.)f‘ =
= 01 ., Further choose an % e € (<{a,#)>) with
Rest, h € 361 ,Aa)=0, ()= 41 . Applying
1.2 and 1.4 we conclude that x € (a’, £’) ¢ E ,
so that E ia open. According to 1.4, any regular in-
terval contains points of E . Since regular intervals
form a base of X , E  ias dense in X .

1.6. Lemma. Let I be an open interval and sup-
pose that g € ael is not constant on I . Then any
h e 3€I can be expressed in the form 1 = x g + f3 ,
where o , 3 € R! are uniquely determined by K .

Proof. Let hc?CI.Chooae a < & in 1 ac
that g (a) %= ¢ (&) and define x, 3 € b & by

the equations

(4) g (a)+ B = h(a) ,

(5) ocq,(zo—)-t-/z-h(lr) .

Then h, = acq+/3€3€1 and, by (III), h1ah
on (a,# ). Let now x be an arbitrary peint in I
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and choose a, , & e 1 auch that

e, < mn(x,a) < mac (x,&) < L .
According to (IV),(III) we have again g (a,) =+ g (&)

and defining %, f&,, e R’ by the equations
ocﬂg,(a.‘,)+p1-h4(a.4) ,
¢19,(&,)+/31-h1(1¢,),

we conclude as above that

y ela, b)) = x g (y)+ 3 = ,&4(?,),
Letting ¢4 = @ and 4 = & we obtain from (4),(5)
that o = o, 3 = B3, so that & ¢ (x) + B = h(x).

1.7. Proposition. A bounded open interval I = £
is regular if and only if each h € aer is bounded on
I,

Proof. Suppose first that I = (a,£) is regular
and choose an h € €(Ca,&>) which is harmonic on 1
and satisfies the boundary conditions 4 (a) = 0 ,
(L) =1, Then g = Rest; &~ is non-constant on
I , whence

W, = {xg+8;x,B¢c R' 3
Since g is bounded, so are all elements of &I .

Suppose now that there is an unbounded ¢, € ¥, .
Then ¥ is non-constant and each function in

¥ ={xq, +3; a, B eRrR"}

is either constant or unbounded. Consequently, I ia
not regular.

1.8. Lemmg, Let ] = (@ ,4 ) be a regular interval
and suppose that x € I, »nt wi = {L}. 1t
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1* = (a*, &*) is any regular interval such that

(6) a <a* < x < ¥<

then
* 3%
bﬂiwx*al*ﬁwmx-{b’*i

m_f_'. Suppose that there is a regular interval
I* = (a*, &+*) satisfying (6) such that ampt w‘:"‘ =
= {a*} . Choose an # € € (<a,&>) which is harmo-
nic on (a,# ) and satiafies the boundary conditions
#(a)=0,h (&)= 1. Further chocae an h* €
e €(<a*, &*)>) which is harmonic on I* and
satisfies the boundary conditions h*(a*) = 0
A* (&%) = 1. In view of 1.2, sfut a)i - {0}
implies 4 (<X, £&)) = {41} .Similarly,
h*(Ca*,x>) = {0} , because /.»fz,ta)f;* = {a*3
Defining g-(t)=0 and g (t) = A*(t) according as
a &t <x and a*<t & &% ,wegeta g €
e € (<a,&*>) which is harmonic on (@, x) v
v (a* b*)= (a,&*).The relations g (@) = h(a)(=0),
g &*)=h(*)(=1) and g(x)=0<1 = f(x)
contradict (III).

By symmetry, the following lemma is also valid.

1.9. Lemma. Let I = (a, & ) be a regular inter-
val, x € I , and suppose that spt coi = {a} . Then
for any regular interval I* = (a*, &*) satisfying
(6) the following implication holds:

ppt wl¥ # 01% = mpt @) = (a*i .
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1.10. Remark. Let us recall that a closed (relative
to X ) aet A ¢ X is termed absorbent provided each
point X € A has a neighborhood U, such that
A for every regular set V with x €
U, . Ve shall denote by F* the set of
those x € X for which X A {x,+c0) is an absor-
bent set. Replacing { x,+ @) by (-0, x> we
define analogously F~ .

1.11. Proposition. If x € X\ F* anda & > x ,
then there is an @ < X such that each % € 3€‘“'H
sesses an extension g e &‘“’9,) 5 Bebt“,w g=r.

Symmetrically, if x € X \ F~

pos-

, then each func-
tion harmonic in some left-hand neighborhood of X can
be harmonically continued acroas X to the right.

Proof. Fix x € X\ F* and & > x . Then there
is a regular interval I = (a,£*) auch that

@ <x<bt<lr, st @) + 16*1 .

Choose a g* € € (<a, £*)) which is harmo-
nic on (q, #*) and satisfies the boundary condition
¢ @)= 0, g*(&*) = 1. The

¢ (x) = g*(a) wi (fal) + g* (™) @) ({0*) =

= ol ({6™) < 1 = g* (8%
so that @* ia not constant on (x, &%), Given an
arbitrary h e 1€< % " have thus by 1.6

h = <+ 3 on (x,&*)

for suitable < , B € R! . Defining ()= xg*tr+
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and g(t)= f(t) according as a <t < £*  and

x <t < &, wearriveata g € Zem,b) with
R“‘tcx,b)‘?‘ = A .

1.12. Corollary. Let Ce,d)c X . Then F* c
c X N\ (c,d ) if and only if each £ € ﬂecqu, with
(a,&)c (c,cl) possesses an extension g € #, o, .
Symmetrically, in order that ™~ (c,a ) = & , it is
necessary and sufficient that each h e %(a’b,) with
(a, &) c(e,d) possess an extension g € &, ., -
Proof. Suppose that F*n (c,d) = / and let
hoe aem,,b) ’
prove that there is a g € 76“’&) with Rebtm’ ¥ =

(a, &) c (e,d) . We are going to

= M . Since thie assertion is trivial when o = ¢

or f is constant (a, &) , we shall assume that

c< @ <& £d and M ia not conatant on (a, & ).
Let A  denote the set of eall A € C¢,a? for which
with Rebtm’wh = h .

a,%) A

If A, < A, are elements of A , then X%’tmz,b) h‘“»y =

= ”a. by 1.6. This implies that imf A e A and
2

there exists an %, € #*

1.11 ensures mf A = c .

Conversely, suppose that each M € ’éea’b_, with
(a,&)c (c,d) extends harmonically to the interval
(e, &), We fix an arbitrary x € (c,d ) and are
going to prove that x & F¥ . In ‘I;he opposite case
there would be a regular interval (a,£) with x e
e (a,)c <a,&> c (c,d) such that
»ht co(:"'“')- {#& 3. Choose an h e € ((a,&>) with

Rewt, o€ ¥, 4y, Mla)=0, h (&)= 1 , and let

- 463 -



g e ze“,w coincide with /4 en (a,£) . Then
¢ (Kx, 02)= M (<{x,b>) =41}

by 1.2. Let now (a_, ,&’ ) be an arbitrary regular
interval contained in (x, £ ) . Since any harmonic
function ¢, € ?Cm” ) extends harmonically to
Ce, &,) and g is not constant an Cc,l’;’) , we
conclude by 1.6 that

H=«xg+B=x on (a,6l)
for suitable o«, 3 € R’ . We have thus shown that all
functions in 'Je(qi’&_') are constant on (e , & ) ,which
contradicts the regularity of (a,,4;) .

1.13. Corollary. If 4 is harmonic on an open in-
terval J , then 4 is monotonous on J . If J c FE
and # e ¥, is not constant on J , then A is 1-1 on
J .

Proof. Suppose that s € ¥, and h (x)< h(y) for
a couple of points X< 4 in J = (e,a) . It follows
from 1.2 that /v is non-decreasing on every interval
(a, ) with {x,g4}c(a, &) c<a,r>c I and,
consequently, also on J . Suppose now that J ¢ E and
consider an arbitrary regular interval (a, %) c (e,d).
It is sufficient to show that $ is non-constant on
(a,,t,) .

In view of our assumptions, /2 is non-constant on
one at least of the intervala (c, %), (a,,d) . For Qe-
finiteness, suppose that # is non-constant on Cc,lr;' ).
By 1.12, any ‘k‘ € ﬂem‘"‘q) extends harmonically to
Ce, &) and, in viewof 1.6, g; = o + 3 on
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4 M -
(a«,,,b;') for suitable «, B € R . Taking into

account that (a/1 s 1{; ) is regular we conclude from
1

R(‘}’b&) = ;kat@"b;’h"'ﬁ y &, /3 e R" ¥
that 4 cannot be constant on (a,, ﬁ; ) .

1.14. Proposition. F¥, F™ are separated sets
with F* U FP" = X\NE .

Proof. Clearly, F*UF c X\E, F*n F = 4 .,
Consider now an arbitrary x € X \ E and fix a
regular interval (a, &) c¢ X containing X such
that

Cﬂub)
(7 Ml w a #+ fa,83 .
Let us distinguish the following two cases:
)
(8) mnt w;"" - {03,
)
(9) »nt w‘:’b = {fal .

Choose an # & €(<a,&)) which ia harmonic on (e, &)
and satisfies the boundary conditions M (a) = 0 ,
b (L) = 41, Further define o', &’ as in Lemma 1.2.
Consider first the case (8). Then &’ £ x and we are
going to prove that <4’ 4)cF* U E . Let 4 e

e <& &) 80 that »pt wé"w = {&3% by l.2.
If 4 ¢ E , then there is a neighborhoed Uy of
such that

I* «
(10) mtoo, * 81
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for- each regular interval I* satiafying
» T
(11) p € 1*c I* c U, n (a,tr) .

Let YV  be an arbitrary regular aset with g e Vc Vc
c Il," n (a,®) and denote by I* = (a*, &%) the
component of V containing 4 , so that (11) holds.
Employing (10), 1.8 and Remark 1.1 we get

/af»th_- /pﬂ.ta)};= {6* c <y, + @) ,

so that 4 € F* , Since (a2’ 8’) c E by 1.4, we
have thus verified the implication
(8)=> x e (a’,#4) c Eu F* .
Using 1.9 in place of 1.8 one concludes by a symmetric
argument that
(9) => xefCa,¥)c EVvF™ .,
Thus both F* and F~ are open in F= X\ E and
FeF+ruF- .
1.15. Lemma. (X, #) satisfies the convergen-
ce axiom of J.L.Doob (see axiom III in [1l],chap.I, § 1).
Proof. Consider an arbitrary regular set UL c X
and fix a component 1 = (a,4) of U . Writing g,
for the unit point-mass ( = Dirac measure) concentrated

at 2 we have for any x e [

u

1 1
Wy o=y (fa i) g, + @, (4&3) €

(see Remark 1.1 above). As shown in 1.2, there are

a’'< &' in <a,& ) such that the function

x — ol o) - nx)

is increasing on (a’,#’') end MK (2’ +) = 0 ,
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(=) =1,

Thus both @l (4143) and wl (fai)=1 - 4 (x)
are positive for x € (a’,2’) . Ifnow £ isa
numerical ( = extended real-valued) function on S U
which is integrable (w¥) for some x e (a’,2’),
then £ is necessarily finite on {a,&}= &1 and the

function

x— Sfdaol = £W) hix)+£@) L1~ h(x)]

is harmonic on I . In particular, if £ is integrab-
le (caz ) for all x in some dense subset of U ,
then £ must be finite on JU (and, consequently,

integrable (wxu') for all x € U ) and the function

x —> Sfd wd

is harmonic on U . Thus the equivalent form III’ " of J.
L. Doob ‘s convergence axiom (see Theorem 1.1.8 in [11)
has been verified.

1.16. Remark. It follows from (I),(II) and 1.15
that (X, 3 ) @satisfies the firat three axioms of H.
Bauer ‘s axiomatic theory as formulated in [1], chap. I,
§ 1. The last axiom of this theory, however, is fulfil-
led only locally (see 1.19, 1.20 below).

If one adopted all axioms of H. Bauer, then in 1.14
more could be said about F*+ F~ , as shown by the
following proposition.

1.17. Proposition. Suppose, in addition, that
(X, ¥) eatisfiea the axiom IV of H. Bauer s axioma-
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tic theory [1). Then either F~ = # or F* = § or
else P P & F¥ and sup P~ < Inf T+ .

A closed set (relative to X ) Ac X is ab-
sorbent if and only if X\ A = (x, B) , where
either o ¢ X or else o« ¢ F~ and, similarly,
either 3 ¢ X orelse B e F*+ .

Proof. The first part of this assertion follows
from the following reasoning which was communicated to
us by C. Constantinescu and A. Cornea. If x € '~ and

@4 € F* then x & p , because in the opposite case
{y,x>=Xn <@g, +00)n(-00,x)% J would be a
compact absorbent set, which cannot occur in the Bauer
theory. Since F~, F+ are closed in X by 1.14 and
1.5, we conclude that Aup F~ < inf Pt provided
F~™ « 0 & F* ,

Let now A ﬁ X be an absorbent set and put
B = X\ A . Consider an arbitrary couple of points
X < 4  in B , It follows easily from the definition
of an absorbent set that

{s,4>nA = (x,4)" A
is again an absorbent set. Since <x,4> n A is
compact, we conclude that <X,4)> ¢ B, =0 that B
is an interval. The rest follows easily from the defi-
nition of ¥~ and F* ,

1.18. Remark. A numerical function .« is termed
hyperharmonic on an open set U c X provided .«
is lower-semicontinuous and >~ c0 on U and each

x el posaeases a neighborhood ux c X such that
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m(x) = J'Md.w::

whenever V is a regular set with x e V c Y c u, .

The clasa of all hyperharmonic functions on U is
denoted by 381’: and 4_78;: ia used to denote the
subclass of all non-negative functions in 26; .

1.19. Lemma. Every x ¢ X is contained in an
open interval J ¢ X such that +7€; separates the
points of J .

Proof. Fix x € X and choose an open interval
J=(a,X) containing x with fa,&%c E such that
one at least of the seta F"n J, F* A J  ia empty
(see 1.14 and 1.5). For definiteness, suppose that
F~ A J = @ . Conaider an arbitrary couple of points

4 <z in J, Let J = (a,, &) be a regular

1 1

interval,n‘,<o.4<.b;'<x,endchnouanhe3£31
with h(a, +)=1 , h(l -)= 0, Put

¢ = a if a, € F* , and in the opposite case let

¢ =dinfi{t;te(a,a,>, F*nlt,a >=0%.
Further choose.a. d > & such that < &, d > c E .
According to 1.12, h extends to a harmonic function g9
on (¢c,d). By 1.13, g is non-increasing en (c,d)
and, consequently, bounded from below on (¢, £-) . Choo-
se a & €X' such that g, = % + g ia poaitive
on (e, &),If ¢ >a ,then ¢c € F* and we extend
9, to (a,4&) defining 9% (t) =+ for

. * .

a <t £ ¢ . Thus we obtain a gy € _'_’36-3 with

qa(af)z %Ca,1)> q,’(b;,) = %(z) .
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1.20. Corollary. Every x € X is contained in an
open interval J ¢ X such that (J, R»ta ® ) (whe-
re Rest, #  denotes the restriction of ¥ to the
system of open sets contained in J ) ia a harmonic
space in the sense of H. Bauer [1].

' Proof. This follows from 1.19 and 1.16.

1.21, Lemma. Suppose that % satisfiea the axioms
(II), (III) atated above and, instead of (III) and (IV),
assume that the following axiom (III*) is fulfilled:

(III*) Every x e X is contained in an open in-

terval U, c¢ X such that there is a (strictly) posi-

X
tive harmonic function on 'LL“ and, for each compact
interval J ¢ u‘x , the following minimum principle is
satisfied:

If M e € (J) is harmonic on the interiar of J

and non-negative on 8J , then 4 = 0 on J .

If, moreover, X =F , then any h e 3€x vaniahes
identically on X oprovided {xj; x e X, AL (x) =0}
has an accumulation point in X and, for any interval

IcX,each g € 351 extenda to a.uniquely determined

g e “x 5

Proof. It is easily seen that there is a sequence
X, € X such that the correaponding intervala ux,,,,
(occurring in (III*)) form a coverin, of X and
”ki{, 'LL“” is an interval for esch positive integer & ,

Given an open interval 1 4 2 , Wwe may clearly asaume

that I A U, = # ., Fixan m and consider
1
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uxw = U . Since there is a harmonic function
# > 0 on U we may introduce the so-called 4 -
harmonic functions on. U pasaing by the standard pro-
cedure from (U, Rest, #) ta (U, % ) ,where

”"?75@ -fg’/h;g.cgﬁa?

for each open G < U . Then, as it is well known, re-
gular sets in (u,"a“e') are juat the same as those re-
gular in ( u,muae) and, for any regular V , the
corresponding harmonic measures &Y : and Q,V‘

in (W ,hd"é) and (U, Wu ¥ ) respectively, satis-
fy

~V 1 v
“’a‘h(x)“‘""x) xeV .

>

Hence it follows that the set of all elliptic points of
(U,*%# ) coincideswith E A U = U . Applying
1.13 and 1.6 to the harmonic space ( U ,""5!) we obtain
that there is an increasing . -harmonic function @
on U such that

"’ﬁus {cg+fB; x,8 e R? 3

J
whence

zeus flogh+08h; x, e R"3 ,
Consequently, every qe 3€u vanishes identically on
W provided q has more than one zero in I . It is
also easily seen that any harmonic function defined on
an interval contained in U extends harmonically to the
whole of U (cf. 1.12).

To complete the proof we start with an arbitrary
9 € JCI and extend it harmonically from Inu“1 to
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ux1 and then, consecutively, to U/ U, ~ for any
M = 2,3,., . Finally we arrive at a § € ¥, . It
is easily seen that g ia uniquely determined and ; =

=g on 1 .

§ 2.

Throughout this paragraph X will denote a one-di-
mensaional manifold, i.e. a Hausdorff topological space
each point of which has a neighborhood homeomorphic with
the real line Rf’ . By a compact arc we mean a set ho-
meomorphic with the interval < 0,4 > c R1 , by an (open)
arc we mean a set homeomorphic with K" . We shall aup-
pose that with each open set U c X there is associa-
ted a vector space ¥,  (over the real number field)
of continuous real-valued functions (called harmonic func-
tions) such that the map % : U —> ®, asatisfiea
the sheaf axiom and the basis axiom (see (I) and (II) in
§ 1) as well as the following axiom:

III* . Bach x € X posseasea a neighborhoed U,
such that there is a (strictly) positive harmonic func-
tion on U, and, for each compact arc C c U, ,the
following form of the minimum principle is fulfilled:

If s e €(C) ia non-negative on &C and
harmonic on the interior of C , then A =0 oan C .

2.1. Remark. The above requirements are met if

(X,¥%) is a harmonic space in the sense of N. Boboc,
C. Constantinescu and A. Cornea (2] (see axioms H, - Hy
on p. 283 and corollary 1.2 on p. 287).
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Conversely, for the special X considered here, the
axioms (I), (II), III* imply that (X, %€ ) fulfils
locally the axioms of H. Bauer and, consequently,

( X, %) satiafiea the axioms H, - Hy of N. Boboc, C.
Constantinescu and A. Cornea. Indeed, using 1.20 one
concludes easily that each x € X 1is contained in an
arc C auch that ( C, Rest, # ) is a harmonic
space in the sense of H. Bauer.

Proposition 1.5 permits us to prove the following
theorem announced in the introduction.

2.2. Theorem. Let E (X, ¥ ) denote the set of
all elliptic points of (X, ). Then E (X, &) is
an open dense subset of X and each component of

E (X,2) baa a countable base.

Proof. In order to prove that E (X, % ) is open
and dense in X we shall show that each x € X is con-
tained in an arc U such that U n E (X, %) is open
and dense in U . Let x &€ X and choose an arc U, =
= U ®» X possessing the properties described in III* .
Since there is a harmonic function # > 0 on U , we
may introduce the harmonic space (U, %) tformea by

/ -harmonic functions concluding that

E(u @) = WAnECX, %) .

Since constants are . -harmonic on U and U is ho-
meomorphic with an open interval in R! we obtain from
1.5 that E CU,*® ) is open and dense in U .

It remains to verify that each component of E (X, 3)
has a countable base. Since this is clear if X is com-

pact, we shall now assume that X is non-compact and
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connected and. X = E (X, %€ ) .

Let us first notice that any harmonic function ¢
defined on an arc U c X extends to a uniquely de-
termined harmonic function on X , Thia followas easily
from Lemma 1.21 which guarantees that for each arc C o

> U there is a uniquely determined harmonic extension
of ¢ toa C .

Using this obaervation we fix an arc U and a

g e %x such that g >0 on U . Put
H={x; xe X, g(x)=2013,

so that H is closed and, according to 1.21, has no ac-
cumulation points in X , We are going to prove that H
is at most countable. Fix an X, € U ,denote by D any
of the two components of X \ {xo 3 and suppose that
HANnD is infinite. For any 4 € D there is preci-
sely one compact arc C,,* with BC,’_ = {x,,y} and we
may define a linear order on D by
m:s%<=>c%cc% .
Using the fact that HnA Cg_ ia finite for each g4 € D
one easily concludes that there is a similarity of the
ordered set (H n D, =2 ) onta the set of all positi-
ve integers.

We see that X N\ H  has at most countably meny
components and it is sufficient to show that each of
these components has a countable base. Let. G be an
arbitrary component of X \ H , Then there is a posi-
tive harmonic function b (= * ¢) on G ‘and we
- may consider - fv -barmonic functions en G, Since
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constants are i -harmonic and any . -harmonic func-
tion defined on an arc contained in G  extends (uni-
quely) to an A -harmonic function on G , we conclude
that there is an M -harmonic function h& on G which
is locally 1-1 on G (see 1.13). Then h, maps G
homeomorphically onto h’G (G) c R! and, consequent-
ly, G has a countable base.

2.3. Corollary. If X is a connected l-manifold and
(X, %) satisfies the axioma of the Brelot theory of
harmonic spaces ([3], [4], [5)), then X necessarily
has a countable base.

2.4. Notation. Making use of the orientability of
each component of X we suppose that faor each arc C ¢
c X there has been fixed a distinguished homeomorph-
ism g, : C—> g, (C) c¢ R’ such that
P, © %:4 ( = the composite of g;‘:: and %, )]
is an increasing function on each component of
%, (C, n C,) whenever the ares (, , (, c X
have non-void intersection.

If C isanarc and x € C , then (7 (x) and
C* (x) will denote the components of C \ {x } with
the notation so chosen that @, (C~(x)) and
% (C*(x)) are, respectively, the left-hand and the
right-hand components of @, (C) N\ {g (x) % .

Ve shall denote by F~(X, ¥ ) the set of those
X € X for which there ia an arc £ ®» x such that
npt caz ¢ CT(x) whenever Y ia regular and x €
€ VeV cC . Theset FH(X, ) is defined
similarly (cf. the introduction).
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Employing Proposition 1.14 one easily obtains the
following result.

2.5. Theorem. F~(X,%), F*(X,3) are dia-
joint closed subsets of X with F~(X.¥) v
UF*¥(X,%#) = XNE(X, %) .

We are now gaing to show that the sets E (X, &),
F=(X,%) and FP*(X,3) are completely characte-
rized by the properties deacribed in Theorems 2.2, 2.5.

2.6. Theorem. Given disjoint closed sets F~ F*c

€ X such that E= X N (F~ o F*) is dense in
X and each companent of E has a countable base,
then there is a harmonic sheaf % on X such that

F~" = F7(X,%), FP* = F*(X,6 3)

Proof. We may clearly suppose that X is connect-
ed. Suppose first that X is non-compact. If x, ¢4 € X,
then there is always an arc C 2 {x,24 3 and we shall
define

x 2 4 if andonly if @ (x) = @ (g) .
Since now any two arcs in X interaect in a connected
set one easily concludes from the properties.of ® that
this definition makes sense and = ia a linear order
on X such that the intervala {x; ¢4 =4 x < =z } %)
form a base of the topological space X .

The system ¢ of all components of E = X \(F~u F¥)
splits into four subsystems ¥ (+,~) €(-,+), €(+) and

€(~-) defined as faollowa:

x) Here, of course, 4 <% X means thnta*ﬁ.x and 4y o X.
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€(+,-) is the system of all C € € with
imf C €« F* and sup C € P~ , €(+) is the sys-
tem of a1l C € € with 8C c F*, ¢ (-,+) and
€ (~) being defined in the same way with the role of
F*¥ and F~ interchanged. Note that each C & €
is an arc because it has a countable base. We now asso-
ciate with each C € € a function M, defined on X
in the following manner.
If C € € (~) , we fix a continuous (strictly)
increasing real-valued function hc on ( with
mf ""c (C) = 0, pup 'h'c (C)= + o and extend it
to X 1letting thX\ C) =403 .
If Ce € (+)
creasing function on C, nf h, (C) = 0, sup h, (C) =
=+ 00, %C.X\ C)= 10} . (Thus h;, need not, in ge-

neral, be continuous at points of dC .)

, then h«c is a continuous de-

1t Ce €(+,~-), then A, is a continuous and

decreasing function on C , 4nf &, (C) = - 00

mugy by CC) =+ 00, hy (XN C) = 0} .

Finally, if Ce €(~,+) and «nf C = x(eF"),
mufy C= oy (e F¥) , then we fix a continuous increasing
function hc on C and extend it to X defining
hc(z)-haf.x) or h,(x)= M, (4 ) according as x <
=% x orag = z, respectively.

We shall say that a function Jv ia harmonic on
an (open) arc @ if it is continuous and expressible

in the fom
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(12) ho= kv E, B, on O,

where f, hc (C e €) are real constants, %, = 0
for all but a finite number of (‘s in € . If W c X
is open then the class “u (of all harmonic functions
on Il ) will consist of those functions that are har-
monic on every arc @ ¢ U .

Consider now any open relatively compact arc @
which is small enough in the sense that one at least of
the sets F~ A & and F* A G is empty. Suppose, for
instance, that F*A @ = £ . Let h € Zfa .

The constants A, (C & €) occurring in the re-

presentation (12) satisfy the implication

wup C € & = fe, = 0

and 4, is constant on @ whenever sup C 3 inf &
or sup O =% imf C . Ve see that constants are the
only functions harmonic on the whole of @ if there is
no subare 6, c @ with G AF =/ eand sup G, =
= sufr B , Suppose now that there is asuch an arc §, <
c @, rap B = »upn 6, @ A F = F , and denote
by Co’ that component of E which contains @, . Then
every M € 'Jfa has the form

(13) R R T

for suitable constants ¢, k.c’ and one concludes ea-
sily that G is regular if and only if sun G € C4
or, which is the same,

(14) rp @ & F~ .
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Assuming (14) and noting that hca. remains constant
on G \ Cs and increaseson & A Ca we arrive at

the implications
X eF nG=>x2infly=sarptay = inf Qi .
We see that

(15) Fo"c FP°(X,2) .
A similar reasoning yields the inclusion

(16) F* c F¥(X,%) .

Suppose now that x € E and let @ be an open relati-
vely compact arc such that x € Q@ ¢ § < £ . Using
the notation introduced above we have then & c Cq , 80
that hca ia increasing on @ , Cansequently, @&
is regular and

snt w: = 96 .
We have thus

(17) E cE (X, %)

which together with (15),(16) implies F~ = F~ (X , %), )
F*¥ = F*¥(X,% ) . We leave it to the reader to ve-
rify in detail that ( X, %) satisfies locally the axi-
oms of H. Bauer [1].

Let us remark that in the case when F = F~ oy F+
is compact the above construction can be modified so as
to yield a harmonic sheaf # on the Aleksandrov compac-
tification X = X vi{moi of X such that

E(X,Z#)=E v {3, FH(X,#)=F*, F(X,®&)=F".
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Indeed, suppose that T is compact and non-void (in-
vestigation of the case F = ') is aimple and may
be left to the reader) and put x, = mf F, x, =
= supn F ,

Geixyxe€ X, x3x 3, Comix; xeX, x,% %}
For L ¢ X we leave the definition of ¥ = ®,

unchanged, as well as the construction of l»c for
Ce €\4{C,,C,3 , while the definition of %1 ,

hc will be modified slightly. It is sufficient to
2
define harmonic functions on subdomains of C v {od v Cz

(in X ) containing o0 and we shall agree that these
will be the functions which arise as restrictions of
functions harmonic on D = C,, viwiu C2 forming
the vector space ae, to be defined below. Let us dis-
tinguish the following cases a) - d):

a) If x € F*¥* and X, € F* then C € €(+) and
making no change in the definition of llt._a we now re-
quire that ht.‘ be §ounded, continuous and decreasing

om C,,

O-bn-fhc1(c,,), th‘ c)=1.

By definition, h € ze’ if and only if

Resty b = hy + oy by on C,

?
Resto, b = oy +J, (14 dan €,

h(o) = M, + ke,

?

where h,, h,, e R .
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b) If X, € F* and x, e F+, then we choose ""c_,
as in a) and require that “"c,_ be bounded, continu-

ous and increasing on (12 ;

O-Mhtz(cz), Arupy hczCCz) =1,
Now % will be termed harmonic on D if

MC., ho= Sy + ke, hc4 om C ,

Bwtczh = 2 he +ho- S, ﬁe on C ,

h(aa) - b, + h ,

where f,, &, € Y,
c)If.xcl’ and x, € F~ | then C € €(-) and
no change is made in the original definition of "'7:
while h« is chosen in the same way as in the case

b). Now 'J?:D will consist of those 4 for which

Rewty b=t + ky by an C,

Mcqh-&,-o-hzc'i-rh%)on C1
(o) = '“,, +l&2

’

1
where A, , k, € R
d) If x € F and x, € F* | then C,e €(-) ama
¢, e ‘f (+) . Retaining the original definition of "‘t
and hc we term /. harmonic on D provided
2
Mc_’h"*’o*&t‘h’c‘ on 61 ,
R"“c,"' = k’o"“’v hc_‘ on Ca ,

h(m)-b, 5
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where &k,, & € R,

We leave it to the reader to verify that this con-
struction turns X = X v {@ ? into a harmonic space
satisfying locally the axioms of H. Bauer [1l] with
E(X,ZZ)=E U {0l .

It remains to consider the case when X is com-
pact. We may then fix an X%, € E | so that F = F* oy
v Fle X=X\ {x,1. Now F is compact in the non-
compact space .Xo and the above remark may be employed
to get the desired harmonic sheaf on the Aleksandrov com-
pactification X, v {x,3} = X .

2.7. Remark. In general, the set of all elliptic
points need not be open. This is shown by the following
example which was communicated to us by C. Constantines-
cu and A. Cornea.

Let X = R', F = #, F* = §030im; mm1,2,..0 .

According to the above theorem, there is a harmonic sheaf
% on R' such that E(X, %) = X\ F* 3
Ft(x,%) = F* . Since X = <0, +o0) is an
absorbent set, one may consider it as a new harmonic spa-
ce whose harmonic functions arise as restrictions to X
of functions harmonic in X (see C. Constantinescu [6]).
Then O ia an elliptic point of X and the points '—;’L—
(m = 4,2,...) tending to 0 are not elliptic.

2.8. Theorem. A closed set A c¢ X ia abaorbent
if and only if each x € dA is contained in an arc
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C=¢C, cX such that either A o C* (x) and
x « PFY*(X,%) orelse AD(C (x) and X €
e P (X,%) .

Proof. This follows easily from 1.17 and the fact
that (X, %) satisfiea locally the axioma of H.
Bauer (see 2.1).
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