

Werk

Label: Article Jahr: 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log40

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 12,2(1971)

ON FULL EMBEDDINGS OF CATEGORIES OF ALGEBRAS INTO CATEGORIES OF FUNCTORS WITH THIN DOMAIN

Věra TRNKOVÁ, Jan REITERMAN, Praha

(Preliminary communication)

Following [1], a category K is said to be binding if every category of universal algebras can be fully embedded into it.

<u>Definition</u>. A small category k is said to be <u>rich</u> if the category S^{k} (of all functors from k into the category of sets) is binding.

In [3],[4], various questions concerning rich monoids are studied. The aim of the present note is to present two theorems concerning rich thin $^{\rm X}$) categories.

Theorem 1. Let & be a finite thin category. Let M, a non-trivial monoid without a non-trivial (i.e., non-identical) idempotent be given. Then the following properties of & are equivalent:

- (1) & is rich.
- (2) 5 contains & non-isomorphic rigid objects xx).

x) We recall that a category is said to be thin if there is at most one morphism with given domain and range.

xx) An object α is called rigid if there is no nonidentical $\alpha: \alpha \longrightarrow \alpha$.

AMS, Primary 1815 Secondary - - 419 - Ref.Z. 2.726.3

(3) M can be fully embedded into S^k.
 (4) Some one from the following categories k₁,..., k₂₄ is a full subcategory of k (the identities and the composed morphisms are not indicated:

A.	M2	kz	R4	ks A
\Diamond	14	1	1111	0
Re 6	A.	Re	Rg	R10
MM	11/1/A		14	
News .	At 12	No.	Re44	h-15
1		>/	*	
A046	Rep	Ange 1	Me 19	A-20
1	11		V.A	1
Ast	A22	Mes	Aug.	h ₂₆
M.			7	X
A 26	Ac ₂ #	M ₂₈	R29	₩20 ¥
17				M
Rest	-			
1				

<u>Definition</u>. We say that a category k is a category with trivial composition if either ∞ or β is an identity whenever the composition ∞ \circ β of morphisms ∞ , β is defined.

Theorem 2. Let \mathcal{H} be a small thin category with trivial composition. Then the assertions (1) - (4) from the previous theorem are also equivalent. (Now, of course, $\mathcal{H}_9 - \mathcal{H}_{34}$ in (4) are superfluous.)

References

- [1] Z. HEDRLÍN, A. PULTR: On full embeddings of categories of algebras, Ill.J.of Math.10(1966), 392-406.
- [2] F.E.J. LINTON: Some aspects of equational categories, Proceedings of the Conference on categorical algebra, La Jolla 1965,84-94.
- [3] J. SICHLER: Concerning minimal primitive classes of algebras containing any category of algebras as a full subcategory, Comment.Math.

 Univ.Carolinae 9(1968),627-635.
- [4] A. PULTR, J. SICHLER: Primitive classes of algebras with two unary idempotent operations containing all algebraic categories as full subcategories, Comment.Math.Univ.Carolinae 10(1969),425-445.

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, Praha 8 Československo

(Oblatum 28.1.1971)